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Incremental consistency checking is a method of increasing the perfor-

mance of the evaluation of UML consistency rules at design-time. It works

by determining and then keeping a list of model elements in memory for

every consistency rule, the so called change impact scope, and re-evaluating

the rule only when the user performs a modi�cation of one of those model

elements in the list. This method has been shown to work if the consistency

rules are evaluated by an interpreter that is under our control so that we can

observe their evaluation. In this paper we assume the software model to be

stored in RDF and the consistency rules to be expressed in SPARQL. We

develop a method to determine the change impact scope by transforming the

queries in a way that the scope is contained in the result set of the modi�ed

query. We show that it is possible to port incremental consistency checking

to systems where the evaluation of consistency rules is black-boxed, which

renders the previous approach of tracing the execution of an (OCL) inter-

preter inapplicable. Since (legacy) consistency rules are typically expressed

in OCL, in the second part of this paper I am introducing my approach to

determine a set of model elements that are required to calculate the result

of an OCL rule executed against a software model stored in RDF in order

to allow a pre-fetching of those elements in situations where the execution of

single SPARQL queries comes with a constant, high time penalty.
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Inkrementelles consistency checking ist eine Methode, um die Auswertung

von UML Konsistenzregeln zur Designzeit zu beschleunigen. Für jede In-

stanz einer Konsistenzregel wird eine Liste von Modellelementen bestimmt

und dann im Speicher gehalten, der s. g. change impact scope, wobei gilt,

dass bei jeder Änderung eines der enthaltenen Modellelemente die zugehöri-

ge Konsitenzregel-Instanz neu ausgewertet werden muss. Es wurde gezeigt,

dass diese Methode funktioniert, wann immer der Interpreter der Konsis-

tenzregeln unter der eigenen Kontrolle ist und somit die Auswertung der

Regeln beobachtet werden kann. In dieser Arbeit nehmen wir an, dass das

Software-Modell in RDF gespeichert wird und die Konsistenzregeln in SPAR-

QL ausgedrückt werden und wir entwickeln eine Methode, um den change

impact scope dieser Regeln zu bestimmen, indem die Regeln so transformiert

werden, dass der change impact scope im Ergebnis der Auswertung enthalten

ist. Wir zeigen somit, dass es möglich ist, inkrementelles consistency checking

in Szenarien einzusetzen, wo die Auswertung der Konsistenzregeln in einer

black box abläuft. Da die meisten existierenden Konsistenzregeln in OCL

ausgedrück sind, beeschreiben wir im zweiten Teil dieser Arbeit eine Metho-

de, um zu einer gegebenen Konsistenzregel in OCL eine Übermenge der zur

Auswertung erforderlichen Modellelemente mittels SPARQL aus einem RDF

triple store im Voraus abzufragen, um die Auswertung in Situationen zu be-

schleunigen, wo das Ausführen einer einzelnen SPARQL-Abfrage mit einem

hohen, konstanten Zeitoverhead verbunden ist.
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1. Problem

Most software modelling utilities use proprietary or specialized technologies for the task

of persisting software models. For various reasons, e�orts have been made to move the

persistence layer towards open standards, such as the Resource Description Framework

(RDF). The main reasons for doing so are to be more generic and enable the use of less

specialized algorithms that can easily be adapted to work on di�erent model types, the

use of di�erent constraint languages, and of course also the general advantages of RDF

(see http://www.w3.org/RDF/advantages.html).

Using conventional technologies for the evaluation of consistency rules against software

models stored in RDF would cause many small queries to be executed against the RDF

triple store, where each one of them comes with a certain time overhead, cumulatively

slowing down the consistency checking process. For that reason it is desirable to evaluate

a consistency rule with as few as possible queries to the RDF triple store.

This thesis covers two aspects of this transition to RDF:

In the �rst part, we assume a consistency rule to be expressed in SPARQL and then

develop a method to apply incremental consistency checking of that rule to a software

model stored in RDF, following the principles as described by Alexander Egyed [Egy11],

while avoiding a large number of queries for the reason mentioned in the previous para-

graph. Generally speaking, this approach constitutes a solution to situations where the

evaluation of a consistency rule happens in a black-boxed system, like an RDF triple

store, where incremental consistency checking done the usual way does not work because

the observation of the inner workings of the evaluating system is not possible.

In the second part, we assume a consistency rule to be expressed in OCL, one of

the currently more typical languages for this purpose, and ask ourselves how we can

evaluate this rule against a software model stored in RDF with as few SPARQL queries

as possible.

2. Introduction

Industrial software models may become very large in size and can contain thousands of

model elements. For obvious reasons it can become di�cult to avoid design-time incon-

sistencies in such models without the assistance of an automatic consistency checking

mechanism. Consistency rules expressed in languages like OCL are the foundation for

such mechanisms, but their execution can be very resource consuming, so an automatic
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re-evaluation of all the consistency rules after every change in the software model would

cause the responsiveness of modelling utilities to decrease dramatically, or even make

them completely unusable depending on the size of the model and the number of con-

sistency rules. Since the execution time of evaluating a large number of rules against a

large software model can easily reach several hours, [Egy11] even a user-triggered evalua-

tion may not be su�cient in terms of usability, because failing to regularly perform such

a lengthy (re-)evaluation (which additionally causes an interruption of the designer's

work�ow) allows for many inconsistencies to happen between two evaluations.

The purpose of incremental consistency checking is to improve the performance of

an evaluation of the consistency rules so that this task can be done in the background

without interrupting the work�ow and providing near-instant feedback if a certain con-

sistency rule is violated during the design process. Several methods of achieving this

exist, some requiring the designer to specially annotate the consistency rules, while oth-

ers perform the task completely automatic. One of the latter ones [Egy11] do so by

observing the evaluation of every single consistency rule and remembering which model

elements are accessed in order to infer the resulting truth value of the rule. For every

rule, this list of model elements is kept in memory and only when one of them undergoes

a modi�cation the related rule will be re-evaluated. The author states that this technique

is feasible for many constraint languages; one requirement being that the evaluation of a

certain constraint must be observable in some way. [Egy11] In this paper we are show-

ing that the approach also functions if the evaluation of the rules is not observable, by

taking advantage of the knowledge about the semantics of the constraint language and

modifying the constraints such that they themselves contain the list of accessed model

elements in their result which is then returned. This allows for the evaluation to take

place in a black box, like it is usually the case in declarative query languages combined

with database systems.

3. Automatic Incremental Consistency Checking

In this section I am giving a short introduction to what automatic incremental consis-

tency checking is and demonstrate it by an example.

OCL consistency rules typically consist of two parts: A context element and an OCL

expression. The context element can be either a class or an interface, or any UML

element of a meta model. It does, however, not represent a particular instance of that

element, but covers all its instances. For example, de�ning a consistency rule with
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context element Class means that the rule is evaluated against every Class in the model

and the evaluations of the rule against the di�erent Classes happen independent from

each other. In the second part of the consistency rule, which is the OCL expression,

a keyword called self is available which describes the current instance of the context

element, or in our particular example a certain class in the model. To evaluate one

consistency rule, the �rst step is to determine all the instances of the context element

in the model. We then generate the cross-product of our consistency rule with all

those context element instances and call the resulting tuples consistency rule instances:

consistency rules in combination with a model element. We assume that every OCL

expression of a consistency rule must evaluate to either true or false and furthermore

assume that a consistency rule is satis�ed i�. all its consistency rule instances evaluate

to true.

In automatic incremental consistency checking, we start by generating this list of

consistency rule instances. This is necessary because the evaluation of two distinct

consistency rule instances may very likely require information about distinct sets of

model elements. Initially we evaluate each one of them and while doing so, we store all

the model elements that were accessed during the evaluation and that therefore in�uence

the result of the evaluation. We call this list the change impact scope of the consistency

rule and we maintain all the change impact scopes in memory. During the following

software design process, whenever the user modi�es one of the elements that are in one

of the change impact scopes, we know that we need to re-evaluate the corresponding

consistency rule instance as soon as possible and also create a new change impact scope

while we do so because the modi�cations in the model may have caused the change

impact scope to change.

There are two important requirements to a change impact scope. The �rst one obvi-

ously is that it has to be complete, because only a complete change impact scope per

de�nition guarantees that a consistency rule is re-evaluated after every possible modi�-

cation in the software model that causes the rule's truth value to change. The second

requirement is that the change impact scope has to be as small as possible, ideally min-

imal (which means the change impact scope contains only model elements of which a

modi�cation causes the result of the corresponding consistency rule to change). [Egy11]

Let us consider the example described by the class diagram in �gure 1 and the sequence

diagram in �gure 2.

In the class diagram we can see that the example consists of two classes: Switch

and Light, with the latter one containing the operations turn-on and deactivate. The
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Figure 1: "Light Switch" Class Diagram

Figure 2: "Light Switch" Sequence Diagram

sequence diagram states that in the scenario Switch the light, the Switch instance �rst

sends a message called activate and then a message called deactivate to the receiver of

type Light.

Let us now declare a consistency rule which states that whenever a message is sent

in the model, the receiver of that message must de�ne an operation with a name equal

to that of the message. We can immediately observe that this rule is not satis�ed in

our example, since the Light class does not de�ne an operation called activate, while

the �rst message sent in the sequence diagram would require it. Such a consistency rule

could look like the one demonstrated in listing 1.

1 Context: Message

2 Description: Message action must be defined as an

3 operation in reciever 's class

4 OCL: self.receiveEvent.oclAsType(InteractionFragment ).

5 covered ->forAll(represents.type.oclAsType(Class).

6 ownedOperation ->exists(name=self.name))

Listing 1: OCL Consistency Rule Example

In incremental consistency checking, we start by determining the context instances.
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In our example, those context instances would be the two messages occurring in the

sequence diagram: activate and deactivate. In a second step, we initially need to evaluate

the rule against both context instances. While we do so, we need to remember the

model elements being accessed, which constitute our change impact scope. For the �rst

message, activate, those are: the message activate, its receive event, all the lifelines in the

diagram that are covered by that receive event, their types which represent the receiving

classes and all the operations owned by those classes. To demonstrate that the change

impact scope may very well vary from context instance to context instance, consider that

only due to the fact that the class Light does not contain an operation called activate,

for the evaluation of the consistency rule we need to iterate over all the owned methods

until we �nd that activate is not among them, so the change impact scope contains all

the operations of that class. Assuming we were looking for an operation called turn-on,

the OCL interpreter might very well use short-circuit evaluation and stop the iteration

of the operations immediately after turn-on was found, since this is enough knowledge

to infer that the rule is satis�ed. In that scenario, depending on the iteration order, the

operation deactivate might be excluded from the change impact scope.

We have now gathered a change impact scope for every consistency rule instance and

whenever the user changes one of the model elements that occur in one of the change

impact scopes, we simply re-evaluate the corresponding rule instance and gather its new

change impact scope. In contrast, using a framework that does not implement incre-

mental consistency checking requires us to re-evaluate all the consistency rule instances

in the model after every small change somewhere in the model, which is by no means

e�cient.

4. Outline

In the �rst part of this paper I am describing how to modify a consistency rule expressed

in SPARQL so that the result of the new query contains the change impact scope of

the consistency rule. In the second part of the paper I describe a method that, given

a consistency rule expressed in OCL, determines a SPARQL query which returns a

superset of the model elements required to evaluate the OCL expression.
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Part I.

RDF and the Change Impact Scope

5. Introduction

Industrial software design models sometimes consist of a very large quantity of model

elements which makes it necessary for software modelling utilities such as the IBM Ra-

tional Software Modeller to incorporate technologies that assist the designer in the task

of keeping the models in a consistent state. Languages exist which serve the purpose of

expressing consistency rules that are automatically evaluated against a given software

model. For obvious reasons instant feedback is desirable but considering the potentially

huge amount of model elements, the straightforward approach of re-evaluating all the

consistency rules after every single change somewhere in a software model is too inef-

�cient, so engineers have invested the e�ort to create a framework that determines for

each rule on which events it has to be re-evaluated.

One approach, as described by Alexander Egyed [Egy11], is incremental consistency

checking : Initially, that is, when the designer �rst writes or modi�es a consistency

rule, we observe the evaluation of that rule and keep track of all the model elements

that are accessed during this evaluation and which therefore potentially in�uence the

rule's resulting truth value. For each rule, we then assemble those model elements in a

list, called the change impact scope. Only if and when the designer modi�es a �eld of

one of the model elements that is in the change impact scope of a particular rule, we

need to re-evaluate the rule. Egyed demonstrates that even though the change impact

scope obtained by this approach is not necessarily minimal, we can observe a substantial

speedup when applying it to large industrial software models. It is common practice to

de�ne a context for every consistency rule, that is a type of model element and acts as

the perspective out of which we evaluate the rule. So for every rule we employ a set of

change impact scopes, one for every consistency rule instance that consists of a rule and

the actual model element of the type as described by the rule's context.

Observing the execution of a consistency rule in order to gain a particular change

impact scope is not always an option, especially when we use a black boxed and inter-

changeable database to store the software model and a descriptive language to express

the consistency rules. In this paper we are developing a method to gain a change im-

pact scope, assuming that the software model is stored in an RDF triple store and the
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consistency rules are expressed as SPARQL queries.

6. Introduction to SPARQL

7. SPARQL Consistency Rules

SPARQL is a declarative, graph-based query language that is executed directly against

an RDF triple store, which means that unlike when following the approach of employing

a customized interpreter of a language for expressing consistency rules, we can not place

our logic to determine the change impact scope in the interpreter which is assumed to

be out of our control. Instead, the only thing we can work with is the SPARQL query

itself: we have to transform it in a way that the resulting query contains some extra

information from that we can derive the change impact scope.

To understand how we store a software model as RDF triples, let us take a look

at the example of a class diagram in �gure 1 and a subset of the corresponding RDF

representation in �gure 3. URIs are represented as blue rectangles, string literals as

green rectangles, predicates as directed red arrows, and instances of the Bag-concept as

triangles. We can see that in RDF, classes are represented by stub nodes consisting only

of an URI. All the additional information about those classes is also represented by URI

stubs. The association is represented by a set of RDF triples at the top of the diagram:

One URI for the association itself, two bag instances, one for each end of the association

that both contain a property which resolves to the classes "Light" and "Switch".

Since consistency rules are executed against a certain context, which is a type of

model element1, one rule consists of several SPARQL queries: One query to fetch all the

context instances - all RDF nodes that should act as the context of the rule - and then

one query to evaluate the consistency rule against one of those context instances. We

will call one of this rules executed against a context instance a consistency rule instance,

in accordance with [Egy11]: CRI=<ConsistencyRule, RDFNode>, where RDFNode is

a result of the context instance query.

We will now look at it in the context of a concrete example. Let us assume a very

simple consistency rule: "Every class must have an operation named deactivate". For

this example, we are interested in a di�erent subset (�gure 4) of the RDF graph of the

class diagram in �gure 1. The context of this consistency rule is class, so as a �rst

1Theoretically we can use any set of RDF nodes as the context of a consistency rule, but typically this

will be a model element.
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Figure 3: Subset of "Light Switch" RDF Representation
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step we need to execute a SPARQL query that returns a list of all classes represented

by their URI stubs (listing 2). In this example we do this by querying for all elements

of type "org.eclipse.uml2.uml.Class" that are owned by a package, although we are by

no means required to construct the query in this form; we allow everything SPARQL

has to o�er with the only limitation that the query must be of the SELECT-type and it

must return exactly one column (i.e. there must be one variable in the SELECT-clause).

Executing this query against our simple model (�gure 1) returns two URIs (table 1), one

representing each of the two classes in our model and therefore our context instances.

We then proceed to create consistency rule instances for every context instance URI

the initial query has returned. In our example those consistency rule instances are two

queries for an operation called "deactivate", one of the Switch class (listing 3) and one of

the Light class (listing 4)2. Listing 3 returns an empty result since the Switch class does

not contain a deactivate operation, while listing 4 returns one result row with variable

bindings representing the path in graph (�gure 4) starting at the Light IRI down to

operation name deactivate. It is necessary to de�ne a set of more or less complex tests

which determine the resulting truth value of the rule instance based on its result set to

allow for greater �exibility, but for the sake of simplicity in this paper we assume that a

rule evaluates to true exactly if there is at least one result, and false otherwise. Therefore

we could rewrite queries 3 and 4 into the ASK form of a SPARQL query, which follows

exactly this semantics.

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT ?x

8 WHERE {

9 ?x ma:type "org.eclipse.uml2.uml.Class" .

10 ?x uml:owner ?y .

11 ?y ma:type "org.eclipse.uml2.uml.Package"

2In some of the queries in this paper we make use of SPARQL's namespace pre�x de�nition,

for instance to shorten http://www.eclipse.org/uml2/2.1.0/UML/_WodksEiPEd-Xye0lIHC77w to

uml:_WodksEiPEd-Xye0lIHC77w. They are both the same thing.
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Figure 4: Another subset of "Light Switch" RDF Representation
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12 }

Listing 2: SPARQL Context Query

x

http : //www.eclipse.org/uml2/2.1.0/UML/_WodksEiPEd−Xye0lIHC77w

http : //www.eclipse.org/uml2/2.1.0/UML/_X0nOwEiPEd−Xye0lIHC77w

Table 1: Result of SPARQL Query in Listing 2

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 ?deactivate_op_class ma:value

10 uml:_WodksEiPEd -Xye0lIHC77w .

11 ?deactivate_op uml:class ?deactivate_op_class .

12 ?deactivate_op uml:name ?deactivate_op_name .

13 ?deactivate_op_name ma:value "deactivate"

14 }

Listing 3: SPARQL Consistency Rule Instance 1 Query

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 ?deactivate_op_class ma:value

10 uml:_X0nOwEiPEd -Xye0lIHC77w .

16



11 ?deactivate_op uml:class ?deactivate_op_class .

12 ?deactivate_op uml:name ?deactivate_op_name .

13 ?deactivate_op_name ma:value "deactivate"

14 }

Listing 4: SPARQL Consistency Rule Instance 2 Query

8. Determining a Change Impact Scope

Given a consistency rule instance expressed in SPARQL, our goal is to determine the

change impact scope of this rule by transforming the query in a way we can extract

the URIs of our RDF graph from the new result set which represent features of our

software model we need to monitor in order to determine when to re-execute the rule

due to a possibly di�erent resulting truth value caused by user changes in the model. In

order to get there, we �rst look at the structure of a SPARQL consistency rule, starting

with our simple example from section 7. To get a better insight, we visualize one of

our consistency rule instances ("Class uml:_WodksEiPEd-Xye0lIHC77w must have an

operation named deactivate"; SPARQL: see listings 3) as a query graph (�gure 5). This

is a graphical representation of the graph pattern our query is looking for in the software

model. The variable bindings of a result row of this query represent possible paths in the

RDF model from the context instance uml:_WodksEiPEd-Xye0lIHC77w to the string

literal deactivate.

Figure 5: Query Graph of Listing 3

To gain the change impact scope of a rule instance, we are interested in determining

a complete (but not necessarily minimal) list of URIs with the property that whenever

one of those URIs appears in a noti�cation about a user change in the software model,

the result set of said rule instance query could potentially change.
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While theoretically a list of all URI nodes in the software model would satisfy this

requirement, we are looking for a smaller, ideally a minimal list. We need to understand

that every edge with its adjacent nodes in �gure 5 represents an RDF triple: The node

at the shaft of the arrow is our subject, the node at the arrowhead is our object, and

the edge label is our predicate. Furthermore, the result set of a rule instance query can

only change if an RDF triple is inserted (or deleted) that has a predicate which matches

one of the edges in the graph, as this is a requirement for a new path to emerge (or an

existing path to disappear). Intuitively one could come up with the very simple approach

to determine a change impact scope by doing something like gathering all the triples

in the RDF store with predicates matching any one edge in the graph. While such an

approach would theoretically work, i.e. it would deliver a valid change impact scope, it

would not be very e�cient since the scope would be relatively large. To come up with

a smaller, still valid scope, let us take a look at SPARQL's OPTIONAL keyword, as

described in the o�cial SPARQL W3C recommendation [PS08]:

Optional parts of the graph pattern may be specified syntactically

with the OPTIONAL keyword applied to a graph pattern:

pattern OPTIONAL { pattern }

The syntactic form:

{ OPTIONAL { pattern } }

is equivalent to:

{ { } OPTIONAL { pattern } }

[...]

Graph patterns are defined recursively. A graph pattern may have

zero or more optional graph patterns, and any part of a query pattern

may have an optional part. In this example, there are two optional

graph patterns.

[...]
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox ?hpage

WHERE { ?x foaf:name ?name .

OPTIONAL { ?x foaf:mbox ?mbox } .

OPTIONAL { ?x foaf:homepage ?hpage }

}

If we now look at our SPARQL query graph in �gure 5 as a tree3, ignoring the directed-

ness, and assume the context instance uml:_WodksEiPEd-Xye0lIHC77w to be the root

of this tree, we can easily gain another valid change impact scope by traversing this

tree and creating a new SPARQL query of the same structure, but which includes an

OPTIONAL keyword whenever we enter a new level of the tree, and placing a UNION

keyword between two or more triples on the same level that all lead to an OPTIONAL

part of the query4. In terms of e�ect on the result set of the query this means that

we do not only gain entire paths in the model from the context instance to deactivate,

but in addition to that we gain all paths starting at the context instance and ending

somewhere on the way to deactivate. We then gather our change impact scope by in-

cluding all RDF nodes that are in the result set of this new query. We demonstrate the

algorithm in pseudo-code listing 5. Performing it on our example in �gure 5 generates

a new SPARQL query as seen in listing 6.

1 query = new graph pattern

2 call traverse(context instance , query)

3

4 function traverse(node , graph pattern ):

5 for each child c of node:

6 p = new optional pattern

7 graph pattern.attach(edge that lead to c, p)

8 p.attach(c)

9 traverse(c, p)

10 if node.children.count > 1 then

11 <put UNION between every pair of children >

3We will cover the special case of cycles in the query graph later.
4The UNION is required to put the OPTINAL branches at par, because without them, a match of

the �rst OPTIONAL branch would limit the result of the second etc.
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12 end if

Listing 5: Pseudo-Code of SPARQL Query Generation

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 OPTIONAL { ?deactivate_op_class ma:value

10 uml:_WodksEiPEd -Xye0lIHC77w .

11 OPTIONAL { ?deactivate_op uml:class

12 ?deactivate_op_class .

13 OPTIONAL { ?deactivate_op uml:name

14 ?deactivate_op_name .

15 OPTIONAL { ?deactivate_op_name ma:value

16 "deactivate"

17 } } } }

18 }

Listing 6: SPARQL Change Impact Scope Query for Figure 5

Let us now take a look at why this query produces a valid change impact scope

for rules similar to the one in listing 3. We assume to be noti�ed about changes in the

software model through change noti�cations, each consisting of an operation ∈ {INSERT,
DELETE} and an operand which is an RDF triple (subject, predicate, object). As

stated before, a re-evaluation of the consistency rule is necessary whenever a new path

P between the context instance and a leaf of our query tree emerges (or an existing one

disappears) in our software model. We re-evaluate a rule whenever we receive a change

noti�cation with an operand with a subject or an object that is in our change impact

scope.

Let us �rst cover the INSERT case: For the new path P to emerge, it is trivially

necessary that at least one new RDF triple is inserted that represents an edge of our

tree. Let us assume that in the �rst place a partial path of P already exists, starting

at the context instance node and spanning over an arbitrary number x of edges towards
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a leaf (including the case of x = 0). For P to emerge, it is now necessary that at

some point we receive an INSERT change noti�cation with an operand that matches

the (x + 1)th edge on the path towards our leaf, because without this RDF triple our

path P can never be completed. Since this change noti�cation obviously includes as its

subject or object the node that comes after the xth transition on our path, which is in

our change impact scope, we will re-evaluate the rule.

The DELETE case is almost trivial: Our change impact scope already contains all

the paths from the context instance to the leafs of our query tree that form the result

of the consistency rule. Once we receive a DELETE noti�cation of an RDF triple that

is part of one of those paths, both subject and object of this triple are in our change

impact scope and therefore we re-evaluate the rule.

9. Special Case: Cycles

In this section we are dealing with the special case of the query graph having cycles, i. e.

when we can not look at it as a tree as we did previously. To demonstrate this situation,

let us take a look at the simple state chart in �gure 6. Our example consists of two

states, "On" and "O�"', and a transition from each to the other. We can �nd a relevant

subset of the model's RDF representation in �gure 7. At the bottom of the diagram

we can see a region, on top of that the two states with their respective names, at the

top of the diagram the two transitions with their names and at the center the source

and target of both transitions. Let us now formulate another rather simple consistency

rule: Every region must have an "On" state of which a transition called "deactivate"

must lead to another state which in turn must have another transition called "activate"

that leads back to the original state. After performing a query to gather all the context

instances of the rule with the context element being Region, one of our rule instances

could look like listing 7. Executing this rule instance query against our model in �gure

7 will return one result row which we interpret as the rule evaluating to true. If we now

proceed to draw our query graph (�gure 8), we can see that the graph is not acyclic,

which means we can not interpret it as a tree as we did in the previous example. In

order to gain our change impact scope query, we need to resolve the cycle in the graph,

which we can achieve by removing any one of the triple patterns that form it. Let us

for instance remove ?activatetarget ma:value ?onstate and we gain a new query graph

as illustrated in �gure 9.

1 PREFIX rdf:
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Figure 6: "Light Switch" State Chart

2 <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 ?onstate uml:owner

10 uml:_BGMEIEiREd -Xye0lIHC77w/owner .

11 ?onstate uml:name ?onstatename .

12 ?onstatename ma:value "On" .

13 ?deactivatesource ma:value ?onstate .

14 ?deactivate uml:source ?deactivatesource .

15 ?deactivate uml:target ?deactivatetarget .

16 ?deactivatetarget ma:value ?offstate .

17 ?activatesource ma:value ?offstate .

18 ?activate uml:source ?activatesource .

19 ?activate uml:target ?activatetarget .

20 ?activatetarget ma:value ?onstate

21 }

Listing 7: SPARQL Rule Instance

We can now interpret the query graph as a tree, again ignoring the directedness of

the edges, starting at the context instance uml:_WodksEiPEd-Xye0lIHC77w as our root

node and can then apply our algorithm from pseudo-code listing 5 to transform the query.

The resulting query will include all paths of the RDF graph that match any sub-tree of

our query in �gure 8 that shares the same root node uml:_WodksEiPEd-Xye0lIHC77w.
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Figure 7: Subset of "Light Switch" RDF Representation
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Figure 8: Query Graph of Listing 7

Figure 9: Modi�ed Query Graph of Listing 7
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To demonstrate that this is query generates a valid change impact scope, let us �rst

assume that our state chart example does not have a transition called deactivate yet. The

change impact scope returned by the transformed SPARQL query would then contain

the nodes of the graph in �gure 10. For the INSERT case, if we now add the deactivate

transition to the model, we will have to insert many RDF triples, and the object of one of

them must be uml:_BGMEIEiREd-Xye0IIHC77w because this is where the deactivate

transition "attaches" to the On state, which is the transition's source state. As soon

as this happens, the surrounding framework delivers an INSERT change noti�cation

containing the On state's stub node uml:_BGMEIEiREd-Xye0IIHC77w which is in

our change impact scope, so the rule will be re-evaluated. The order in which all the

INSERT noti�cations that together form the insertion of our deactivate transition arrive

does not matter, because whatever model changes have happened before, at some point

the transition has to "attach" to the On state's stub in our change impact scope which

is the �rst chance (actually the exact point in time) when the result of the rule instance

query changes.

Again, the DELETE case is trivial and follows the same logic as in the previous

example.

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 ?onstate uml:owner <uml:_BGMEIEiREd -Xye0lIHC77w/owner > .

10 { OPTIONAL {

11 ?onstate uml:name ?onstatename .

12 OPTIONAL {

13 ?onstatename ma:value "On"

14 } } }

15 UNION

16 {

17 OPTIONAL {

18 ?deactivatesource ma:value ?onstate .
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19 OPTIONAL { ?deactivate uml:source

20 ?deactivatesource .

21 OPTIONAL { ?deactivate uml:target

22 ?deactivatetarget .

23 OPTIONAL { ?deactivatetarget ma:value

24 ?offstate .

25 OPTIONAL { ?activatesource ma:value

26 ?offstate .

27 OPTIONAL { ?activate uml:source

28 ?activatesource .

29 OPTIONAL { ?activate uml:target

30 ?activatetarget

31 } } } } } } } }

32 }

Listing 8: Change Impact Scope Query of SPARQL Rule Instance

Figure 10: Nodes in Change Impact Scope of Example in Listing 8

Following the same logic, we extend our algorithm to support SPARQL queries with

variables in the predicate of a graph pattern triple.

10. Implementation

We implemented a system that demonstrates the functionality of the described approach,

covering almost the entire language speci�cation of SPARQL [PS08]. In this section we

will discuss the implementation of our approach as outlined by the system diagram in

�gure 11 and then explain its interface to the environment. Again, our goal is to gain

a valid change impact scope, i. e. a set of RDF nodes that we need to observe with
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the property that whenever one of them appears as the subject or object in a change

noti�cation, we need to re-evaluate the rule.

Figure 11: System Diagram

10.1. Transforming SPARQL

The �rst step in our transformation process is to lex and parse a textual representation of

a consistency rule expressed in SPARQL (a LL(1) grammar) and turn it into an abstract

syntax tree, which we will then use to perform our transformation before using a code

generator to eventually create the textual representation of the transformed SPARQL

query. In this paper we are working with the SPARQL Query Language for RDF W3C

recommendation dated 15 January 2008 [PS08]. We take advantage of an already existing

SPARQL grammar for the ANTLR parser generator5 to create a lexer and parser for

the SPARQL language. The sparkle-g [TMP12] project contains such a tree grammar

and we use it to generate a parser that creates an abstract syntax tree of the rule query.

In a �rst pre-processing step we unify some of the various SPARQL notations of basic

graph patterns in order to simplify the following steps. We proceed with building the

5ANother Tool for Language Recognition, is a language tool that provides a framework for construct-

ing recognizers, interpreters, compilers, and translators from grammatical descriptions containing

actions in a variety of target languages. [Par12]
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query tree as described earlier in this paper and then creating a new abstract syntax tree

representing the transformed query, which we UNION with the original query in order

to preserve its result in addition to the change impact scope. The following sections

describe those steps in detail by working with another simple example of a consistency

rule.

10.1.1. Example

To demonstrate the implementation of our approach we will use the following simple

consistency rule: "Every class must have an operation called turn-on and an operation

called deactivate", with Class obviously being the context of this rule. For �exibility

reasons we allow the context instances to be arbitrary RDF nodes the user provides in

the form of a list and we refer to it in the rule instances with a specially annotated

variable. In this particular case the user could gain such a list of classes (the context)

by executing a SPARQL query similar to the one in listing 2 with resulting context

instances as shown in table 1 (each binding of x represents one class' stub RDF node).

In a next step, we express the consistency rule itself in SPARQL, for instance as in

listing 9. Since this is the generic SPARQL representation of the consistency rule we

do not include a concrete context instance in the query, but rather refer to it by using

a variable called ?context. Later we will tell the system as a parameter of an interface

call that this is the variable that is to be substituted with the context instances, one at

a time.

1 PREFIX rdf:

2 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 PREFIX ma:

4 <http :// sea.uni -linz.ac.at/ma/>

5 PREFIX uml:

6 <http :// www.eclipse.org/uml2 /2.1.0/ UML/>

7 SELECT *

8 WHERE {

9 ?turnon_op_class ma:value ?context .

10 ?turnon_op uml:class ?turnon_op_class ;

11 uml:name ?turnon_op_name .

12 ?turnon_op_name ma:value "turn -on" .

13 ?deactivate_op_class ma:value ?context .
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14 ?deactivate_op uml:class ?deactivate_op_class ;

15 uml:name ?deactivate_op_name .

16 ?deactivate_op_name ma:value "deactivate"

17 }

Listing 9: SPARQL Consistency Rule Query

10.1.2. Lexing and Parsing

We use the sparkle-g [TMP12] ANTLR tree grammar to generate a Java tree parser

for SPARQL. When feeding our example rule from listing 9 to the parser we gain the

abstract syntax tree in �gure 12.

10.1.3. Pre-Processing

Since SPARQL allows multiple di�erent notations to address identical sets of triple

patterns, we do some pre-processing to unify the abstract syntax tree in order to simplify

the actual transformation process. SPARQL o�ers three types of triple pattern notation:

subject - predicate - object, subject with a following predicate - object list and subject

- predicate with a following object list. Of course those di�erent notations result in

di�erent abstract syntax trees and since they are nothing but syntactic sugar for one

and the same thing, we prevent several special cases in the following implementation by

assuring that only the �rst kind of pattern, subject - predicate- object, is present in the

input queries. The following citation [PS08] demonstrates the syntax of the latter two

pattern types by example:

4.2.1 Predicate-Object Lists

Triple patterns with a common subject can be written so that the

subject is only written once and is used for more than one triple

pattern by employing the ";" notation.

?x foaf:name ?name ;

foaf:mbox ?mbox .

This is the same as writing the triple patterns:
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Figure 12: Abstract Syntax Tree of Query in Listing 9
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?x foaf:name ?name .

?x foaf:mbox ?mbox .

4.2.2 Object Lists

If triple patterns share both subject and predicate, the objects

may be separated by ",".

?x foaf:nick "Alice" , "Alice_" .

is the same as writing the triple patterns:

?x foaf:nick "Alice" .

?x foaf:nick "Alice_" .

Object lists can be combined with predicate-object lists:

?x foaf:name ?name ; foaf:nick "Alice" , "Alice_" .

is equivalent to:

?x foaf:name ?name .

?x foaf:nick "Alice" .

?x foaf:nick "Alice_" .

In our pre-processing step we eliminate potential predicate-object lists and object lists

in the query and replace them with the regular subject - predicate - object triple pattern

notation. Applying this step to our abstract syntax tree from the example leads to a

new abstract syntax tree as illustrated in �gure 13.

10.1.4. Transformation

Starting with our uni�ed abstract syntax tree, we extract the triple patterns and use

them to build a query DAG of the rule, where each variable or literal is represented by

a vertex and each predicate by an edge. The directedness of the edges denotes which

vertex is the subject (shaft of the arrow) and which is the object (head of the arrow).
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Figure 13: Uni�ed Abstract Syntax Tree of Query in Listing 9
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We do so by starting at the annotated context variable (?context) and then adding edges

leading to or from new vertices, one for every triple pattern in the query that references

the current vertex as its subject or object. This leads us to the query graph in �gure 14.

As speci�ed earlier in this paper, our goal is to gain a graph which becomes a tree as

soon as we ignore the directedness of the edges and consider the context variable to be

the root, and we already demonstrated the correctness of this approach. In order to get

there, we stop the graph building process as soon as we reach a vertex that has already

been processed (compare �gure 8 vs. �gure 9).

Figure 14: Query Graph of Query in Listing 9

In a next step, we apply our algorithm from pseudo-code listing 5 to actually transform

the query to return a change impact scope. We start at the root of our query "tree" and

traverse it, opening a new "level" of OPTIONALs whenever we step into the next depth

level of the query tree and closing it when the current sub-tree has been processed. We

use this algorithm to generate a fragment of an abstract syntax tree that queries for the

change impact scope of the original SPARQL query. In a next step, we replace all the

SPARQL variable names in that fragment such that they don't con�ict with the variable

names used in the original query and then we merge both by introducing a new top-

level SPARQL UNION node with the original query pattern and our newly generated

change impact scope query pattern as its children. In case the SELECT clause does

not contain an asterisk, we add all the newly introduced variables to it. The result of

those processing steps is the abstract syntax tree split into �gures 15 and 16, which,

after passing it to our code generator, yields the SPARQL query in listing 10. Before

executing the query, we turn the query into a consistency rule instance by binding the

?context variable (and the corresponding variable in the change impact scope part of

the query) to one concrete instance of the rule's context element.
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Figure 15: Resulting Abstract Syntax Tree of Query in Listing 9 (Part 1/2)

34



Figure 16: Resulting Abstract Syntax Tree of Query in Listing 9 (Part 2/2)
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1 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX ma: <http ://sea.uni -linz.ac.at/ma/>

3 PREFIX uml: <http ://www.eclipse.org/uml2 /2.1.0/ UML/>

4 SELECT *

5 WHERE {

6 { ?turnon_op_class ma:value ?context .

7 ?turnon_op uml:class ?turnon_op_class ;

8 uml:name ?turnon_op_name .

9 ?turnon_op_name ma:value "turn -on" .

10 ?deactivate_op_class ma:value ?context .

11 ?deactivate_op uml:class ?deactivate_op_class ;

12 uml:name ?deactivate_op_name .

13 ?deactivate_op_name ma:value "deactivate" .

14 } UNION {

15 { OPTIONAL { ?var0 ma:value ?context .

16 OPTIONAL { ?var2 uml:class ?var0 .

17 OPTIONAL { ?var2 uml:name ?var3 .

18 OPTIONAL { ?var3 ma:value "turn -on" .

19 } } } } }

20 UNION

21 { OPTIONAL { ?var4 ma:value ?context .

22 OPTIONAL { ?var5 uml:class ?var4 .

23 OPTIONAL { ?var5 uml:name ?var6 .

24 OPTIONAL { ?var6 ma:value "deactivate" .

25 } } } } } } }

Listing 10: Resulting SPARQL Query of Our Example

Pseudo-code listing 11 gives a coarse overview of the core transformation algorithm.

1 call unify_triples_same_subject ()

2

3 /* variables keep record of the owning triple */

4 variables = { }

5

6 for every triple t in the original query:

7 if not variables.contains(t.subject) then
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8 variables.add(t.subject)

9 end if

10 variables[t.subject ]. attach(t)

11 if not variables.contains(t.object) then

12 variables.add(t.object)

13 end if

14 variables[t.object ]. attach(t)

15

16 root = variables[context]

17 call traverse(root , { }, new group_graph_pattern)

18

19

20 function traverse(node , covered , graph_pattern ):

21 for each child c of node:

22 p = new optional_pattern(c.triple)

23 if (node.children.indexOf(c) < node.children.size - 1) then

24 <put UNION node between all children and current node >

25 end if

26 graph_pattern.attach(p)

27 if !covered.contains(c) then

28 call traverse(c, covered.union(c), p)

29 endif

Listing 11: Pseudo-Code of SPARQL Transformation

10.1.5. Post-Processing

The result set of the transformed query consists of the result set of the original query,

where any of the columns representing the original query is not NULL, and then a

set of rows where the columns of the original query remain NULL and the columns

of our additional variables contain information about the change impact scope of our

consistency rule instance. In order to gather our change impact scope, we iterate over

the latter part of the result set and create a list of unique IRIs which serves as the change

impact scope as described earlier in this paper.
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Part II.

Towards an OCL to SPARQL

Translation

11. Introduction

Independent of the chosen technology of persistently storing an UML model we need

to provide the ability to evaluate OCL consistency rules against the model, since OCL

is part of the UML speci�cation. For many reasons it is desirable to evaluate those

rules as low as possible in a tiered architecture of a software modelling utility, one

of them being that following this approach it becomes super�uous to (partially) load

and map the model into main memory data structures multiple times before we can

evaluate OCL expressions using traditional methods, which is advantageous in systems

with dynamic loading of model fragments. An ideal solution to this task would be a

complete translation from OCL to a query language that is native to the persistence

technology used for storing the software model, such as SPARQL in the case of RDF. In

our concrete case, the question arises whether or not the expressive power of SPARQL

is enough to cover all the concepts of OCL. Existing work such as [AG08] suggests

that SPARQL has an expressiveness equivalent to that of relational algebra, while other

papers like [HWDD] try to tackle the translation from OCL to SQL (see part IV of

this paper). These facts together let us conclude that in theory it might be possible to

de�ne a mapping from OCL consistency rules to SPARQL consistency rules. Another

advantage of the evaluation of consistency rules in the persistence layer in situations

where, for example, the system is distributed over multiple physical machines and the

execution of single SPARQL queries causes a high overhead in execution time, due to

network communication or other factors. In those situations, even the possibility of

fetching in one single SPARQL query all the model information that an interpreter

requires to evaluate a given consistency rule constitutes a notable advantage. In this

part of the paper we describe an approach that does exactly this and due to the potential

reusability the work might serve as the groundwork for a complete translation from OCL

to SPARQL. Like in the �rst part of the paper, we assume a software design model to

be stored in an RDF triple store and furthermore we assume that the execution of
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(SPARQL) queries against that model to exhibit a high constant time penalty due to

various overheads such as network communication and a general system-inherent delay.

In situations where we want to evaluate consistency rules expressed in OCL against such

a model, using an interpreter to fetch tiny portions of the software model on demand in

order to evaluate an OCL rule is highly ine�cient due to multiple delays caused by the

constant execution overhead. Our goal here is to develop a method that, starting at a

given OCL consistency rule, will generate one single SPARQL query that fetches all the

necessary information about a software model that is su�cient for the OCL interpreter to

evaluate the consistency rule without performing additional RDF queries. The approach

is generic enough to suit di�erent RDF representations of software models.

12. Introduction to OCL

The Object Constraint Language (OCL) is an addition to UML that serves as a formal

language to specify constraints on UML software models. It is a declarative language that

is side-e�ect free, which means that the execution of OCL expressions can never cause

any changes in the software model it is evaluated against. OCL is an important addition

to UML in that it allows specifying precise semantics on top of the (graphical) software

models. [Dem09] The three most commonly used OCL constraints are invariants, pre-

conditions and post-conditions. Invariants are constraints that have to be satis�ed at all

times, while pre-conditions and post-conditions have to be satis�ed before or after the

execution of some program code. Our OCL constraints consist of two parts: The context

de�nition and the expression that is evaluated against all context element instances and

that can refer to the context element instance by using the self keyword. An example

of an OCL constraint (invariant) that states that the participants attribute of a class

called Meeting must be at least of size 2 can be found in listing 12.

1 context Meeting

2 inv: self.participants ->size ()>=2

Listing 12: Simple OCL Example

13. Determining the Accessed Model Fragment

Let us look at the example OCL consistency rule in listing 13. In general, most of

the model elements accessed during the evaluation of an OCL expression are repre-
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sented by dereference terms consisting of a chain of names with optional additions

like, for example, formal parameters enclosed by parenthesis. One of those derefer-

ence terms in the example is self.namespace.oclAsType(Package).packagedElement. In

order to fetch the information required by the OCL interpreter to evaluate the rule,

we need to fetch the resulting elements of all those dereference terms in the OCL

expression, each representing a set of model accesses, and then let the interpreter

perform the rule's semantics on top of those elements. In addition to that we need

to keep track of the variables used in the expression, which are nothing but abbre-

viations for dereference terms (or other variables that eventually resolve to them).

For instance, children in the example refers to a subset of the elements returned by

self.namespace.oclAsType(Package).packagedElement, where the logic to determine this

subset is based on additional model accesses on the set of elements returned by the

navigation term. So in order to feed all the information of this concrete example

necessary for the interpreter to interpret the LET expression, we need to remember

the results of self.namespace.oclAsType(Package).packagedElement (the �rst dereference

term), self.namespace.oclAsType(Package).packagedElement.oclIsTypeOf(Class) (the left

operand of theAND operation in the select speci�cation), and self.namespace.oclAsType(Package).packagedElement.oclAsType(Class).allParents()

(the information necessary to compute the right operand of the AND operation in the

select speci�cation).

1 Context: Class

2 Description: parent class should not have an attribute

3 referring to a child class

4 OCL:

5 let children:Set(NamedElement) =

6 self.namespace.oclAsType(Package ). packagedElement ->

7 select(pe:PackageableElement|pe.oclIsTypeOf(Class) and

8 pe.oclAsType(Class). allParents()->includes(self)) in

9 self.ownedAttribute ->forAll(p:Property|

10 p.type.oclIsTypeOf(Class) implies children ->

11 excludes(p.type.oclAsType(Class )))

Listing 13: Example OCL Consistency Rule
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14. RDF Mapping and Type Resolving

Since there is no globally valid mapping from software design models to RDF triples,

in order to determine what portions of the RDF model we need to fetch to enable the

interpreter to process a consistency rule, we extract the semantics of the dereference

terms to a system-speci�c module that provides type and mapping information.

We do so by introducing an interface with an option to call to the surrounding system

which will accept as parameters the type of the current model element combined with

the subsequent operation or property name in the navigation term and return the type

of the resulting elements combined with two SPARQL fragments that together represent

this one OCL navigation step: One fragment for the actual value of the new model

element and one for its stub. (Due to the simple structure of RDF triples we typically

�nd it necessary to facilitate some kind of stub node for every model element, which

most likely is an URI representing it, and we need to remember it to perform additional

navigation steps on the element.)

Let us now look at it in the form of an example, considering the navigation step

self → namespace. We already know the type of the initial model element, which in

this case is the context type Class. (Another way of gaining the initial type would be a

previous application of this method.) We will now ask the surrounding system through

an interface call as described above the following: If we navigate from a model element

of type Class to its property namespace...

1. ...what is the type name of the property namespace?

2. ...what is the SPARQL fragment to navigate from the RDF stub node of the Class

instance to the RDF stub node of the property namespace?

3. ...what is the SPARQL fragment to navigate from the RDF stub node of the Class

instance to the RDF value node of the property namespace?

The surrounding system will then return the following answers (compare to the model

fragment in �gure 17):

1. Namespace

2. ?in uml:namespace ?out

3. ?in uml:namespace ?x . ?x ma:value ?out
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Figure 17: RDF Fragment of Example Model

Please note that this method allows the user to also fetch an arbitrary set of additional

RDF nodes that may later be required by the interpreter simply by querying for them

in one of the two SPARQL fragments returned by the interface call.

We can now repeat this whole process and thereby resolve the entire navigation term

self.namespace.oclAsType(Package).packagedElement, one by one name (see �gure 18).

Figure 18: Resolving an Entire Navigation Term

15. Implementation

15.1. OCL Parser

The starting point for the implementation of this approach will be a parser generated

by the jacc compiler compiler from an EBNF speci�cation of OCL. jacc is short for just
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another compiler compiler and it creates bottom-up/shift-reduce parsers targeting the

Java language and its syntax is closely syntactically compatible with Johnson's classic

yacc parser generator for C. [Jon04] It takes an input �le specifying things such as, among

others, a java package name, import statements, a class name, the names of the methods

linking the parser to the scanner, token names and the operator precedence. For every

EBNF production rule we can specify a semantic annotation in the form of a plain java

statement enclosed in curly brackets. The java code speci�ed in those annotations stays

completely unchecked during the parser generation and the only changes jacc performs

are literal replacements of $$ with the return value of the current production rule and

of all $n with the return value of the n'th parameter on the right side of the production

rule. In the �rst line of the following example, $1 will become whatever (Object) it is

that PrimitiveLiteralExp returns and LiteralExp itself will return the same Object, due

to the assignment of $1 to $$.

LiteralExp : PrimitiveLiteralExp { $$ = $1; }

| CollectionLiteralExp { $$ = $1;

System.out.println("Hello world!"); }

| TupleLiteralExp { $$ = $1; }

;

We use this parser and the semantic annotation to generate a list of all model accesses

that are occurring in any given OCL expression. In order to stay independent of a

particular mapping from a software model to an RDF model, we introduce a framework

speci�c abstract resolver class that provides a SPARQL fragment representing every

dereference in an OCL expression.

15.2. System Description

As stated before, the starting point of our implementation is the OCL parser. Dur-

ing its operation, whenever it encounters a name token that marks the beginning of a

dereference expression as described before in this paper, it will create a new ModelFrag-

ment instance that represents this dereference expression. It will try to look up the

�rst name of that expression in its variable scope in order to determine its type and its

SPARQL expressions, against which the subsequent names will be resolved later. If the

�rst name of such an expression does not occur in the variable list, the system will raise

an error since it encountered an unknown name. Every subsequent name in the current
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Figure 19: Class Diagram
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expression will be added to the fragments list of the ModelFragment. This process is

repeated until the parser completed parsing the OCL expression, while we remember

every generated ModelFragment instance.

In the next step our goal is to derive the SPARQL fragments that query an RDF

triple store for all the model elements that will be accessed during the evaluation of

our OCL expression. To do so, we iterate over all our ModelFragment instances and

call their respective getSparql() method. This method will in turn iterate over all its

fragments (i.e. names), starting by looking up both stub and value SPARQL fragments

that yield the model element represented by the �rst name in the fragment list. Those

fragments include an out-anchor SPARQL variable that we textually replace with a new,

query-wide unique variable name which also serves as the anchor point for the SPARQL

fragment of the subsequent name in the fragment list. As described before, the system

uses our TypeResolver to determine the type and SPARQL fragments of the next name

in the fragment list. All but the �rst names in the list have both in and out anchor

variables that are used to link the names' SPARQL fragments to eventually form a

SPARQL query pattern representing the current ModelFragment. We keep track of all

theModelFragments and the newly introduced variables in their SPARQL representation

to allow a mapping of the SPARQL results to the dereference expressions.

Once all the ModelFragments are converted to SPARQL fragments, we simply add

them together and prepend the SPARQL pre�x that we receive as an input parameter

and that also contains the namespace de�nitions, and a SELECT clause with all the

relevant variables used in any of the SPARQL fragments.

15.3. Variable Stack

Some OCL constructs, like LET expressions or iterators on collection types introduce

variables that are not global and have a limited scope in the expression. In order

to handle those variables and their scopes correctly in our approach, we introduce a

variable stack. Each element on this stack is a variable map representing the scope of

the most recently introduced variables. Whenever the parser reaches a point in the OCL

expression that introduces a new variable, we perform a push() operation on the variable

stack and thereby add a new variable map that holds all the variables in the current

scope. When the parser reaches the point where the scope of the variable ends, it will

perform a pop() operation and dispose of the top variable map and all the variables in

it that have reached their end of life. Let us take another look at the example in listing
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13 and compare it to the variable stack diagram in �gure 20. At the very beginning we

introduce the very �rst scope in the variable map stack which only holds one variable:

self (t=1). Our system receives the binding of this variable as an input parameter.

Then, the pe:PackageableElement part in the �rst select operation introduces another

variable called pe (t=2) with a scope that spans over the body of the select operation.

Then, the LET expression introduces a variable called children (t=3) which is valid only

for the part of the LET expression after the in keyword (which in this case is until the

end of the OCL expression). The last variable is introduced by the p:Property part of

the forAll iterator (t=4) and it is also only valid inside the body of the forAll operation.

Every ModelFragment as described in section 15.2 holds a �at list of variables that are

valid at the place in the OCL expression where the corresponding dereference expression

occurred. When we instantiate a new ModelFragment, we copy all the variables from all

levels of the variable stack to its internal variable list, while variables of an inner scope

have precedence over variables of an outer scope and will overwrite them.

Part III.

Evaluation

In order to evaluate our SPARQL transformation, we use the examples illustrated earlier

in this paper, feed the corresponding SPARQL queries into our system and then analyze

whether the produced change impact scopes are correct. Since the e�ort to manually

verify those change impact scopes in the full-blown RDF representation of a real-world

UML model would be unreasonably high, considering the potentially huge size of the

resulting change impact scopes, and the infrastructure to perform higher-level tests in

the context of a software modelling utility is not available to me, we will use our own

rudimentary UML-RDF representation to validate our system. Since the algorithm in

principle operates on any kind of software model represented in RDF, this approach does

not violate any of our constraints.

Let us start with a rather basic example, which is the following consistency rule:

"Every class must have an operation called deactivate." As our model, we pick the RDF

graph as shown in �gure 21. In SPARQL, we can represent this consistency rule as

shown in listing 14. In order to apply this consistency rule, we need to replace the

context variable with a context instance, in this case �rst ex:Class1 and then ex:Class2.
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Figure 20: Variable Stack Example
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If we use ex:Class1 as the context instance, the expected change impact scope is as

follows: Class1, op1, and op3. Executing our system with these parameters produces

exactly this change impact scope. If we use ex:Class2 as our context instance, we expect

our change impact scope to consist of Class2 and op2, which is exactly what our system

returns.

Figure 21: RDF Representation of Basic Example

1 PREFIX ex: <http :// example.com/>

2 SELECT *

3 WHERE {

4 ?context ex:owns_operation ?op .

5 ?op ex:name "deactivate"

6 }

Listing 14: SPARQL Consistency Rule of Basic Example

Let us now look at another example based on the state diagram in �gure 22. Our

diagram consists of two states, one called "On" and one called "O�". There are two

transition, one called "activate" and one called "deactivate". We now assume the fol-

lowing consistency rule: "Every region must have an "On" state of which a transition

called "deactivate" must lead to another state which in turn must have another transi-

tion called "activate" that leads back to the original state." Again, in SPARQL, we can

express this consistency rules as shown in listing 15. Our expected change impact scope

in this case is the following: ex:Tr1, Tr2, St1, St2, Re1 which is correctly computed

48



by our system. During and after the development, we have successfully evaluated the

system using a number of more or less complex examples as illustrated here, which is

also the case for the second mechanism described in this paper.

Figure 22: RDF Representation of Second Example

1 PREFIX ex: <http :// example.com/>

2 SELECT *

3 WHERE {

4 ?context ex:includes_state ?on_state .

5 ?on_state ex:name "On" .

6 ?on_state ex:owns_transition ?deactivate .

7 ?deactivate ex:name "deactivate" .

8 ?deactivate ex:destination ?off_state .

9 ?off_state ex:name "Off" .

10 ?off_state ex:owns_transition ?activate .

11 ?activate ex:name "activate" .

12 ?activate ex:destination ?on_state
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13 }

Listing 15: SPARQL Consistency Rule of Second Example

Part IV.

Related Work

16. The Expressive Power of SPARQL

While in this paper we provide a method of determining the change impact scope of a

consistency rule expressed in SPARQL and a method to pre-fetch part of the model that

is required for an OCL interpreter to interpret an OCL consistency rule against a model

stored in RDF, we did not discuss the question whether or not SPARQL is expressive

enough to cover all the possible consistency rules that the OCL grammar can produce.

A positive answer to that question would enable an interesting continuation of our work:

the direct translation of OCL expressions to SPARQL.

In their paper, Angles et al. [AG08] claim that they were able to prove that SPARQL

has the expressiveness of relational algebra. They de�ne a set of transformations from

SPARQL to non-recursive safe Datalog with negation, show that SPARQL is contained

in the latter one, and then prove by applying the transformations that the results of

queries before and after the transformation produce equivalent results (and everything

vice-versa) and then state that since non-recursive safe Datalog with negation has the

same expressive power as relational algebra, SPARQL has the same expressive power

as relational algebra. This in turn implies that if a transformation from OCL to SQL

exists, it should in theory be possible to perform a direct transformation from OCL to

SPARQL.

17. A Framework for Generating Query Language

Code from OCL Invariants

In their paper, [HWDD] Florian Heidenreich et al. claim they have developed a generic

software framework to create query language code from OCL invariants in the context
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of model-driven software development (MDSD). They state that most current MDSD

approaches only focus on transforming structural descriptions of software systems, while

neglecting semantical integrity rules. Their framework consists of three parts: The �rst

one reads the UML/OCL model and creates an abstract syntax model of it, while the

second one performs the transformation of the UML model to the target data schema.

The third part maps OCL invariants to declarative query languages. For this transfor-

mation, they identi�ed common patterns that occur in OCL constraints. The framework

provides the possibility for the developer to specify the equivalent code fragments of the

target relational algebra query language of his choice. They exhibit an example of a

transformation from OCL to SQL, however the rules in the target system are enforced

by creating a VIEW on one or multiple database tables and then applying view-based

integrity checks. Little implementation details are given so it remains questionable as

to whether or not their approach functions without database-speci�c features that are

outside the scope of relational algebra.

18. On the Expressive Power of OCL

In another interesting paper, [MC99] Luis Mandel and María Victoria Cengarle inves-

tigate the expressive power of OCL. They show that the expressiveness of OCL and

relational calculus are not identical, however they do so only by showing that some of

the constructs of relational calculus are not expressible in OCL, which does not allow

the converse argument that OCL is not contained in relational calculus. Another �nding

was that due to the missing capability of computing some recursive functions, OCL is

not equivalent to a Turing machine.

19. Transformation Techniques for OCL Constraints

J. Cabot and E. Teniente [CT07] investigate di�erent syntactic possibilities to de�ne

equivalent integrity constraints. They show alternative expressions for some constructs

in OCL that yield identical semantics, for instance by replacing the context element of a

constraint, replacing collection operators with others and applying Boolean algebra laws.

Depending on the interpreter, some of those semantically identical integrity constraints

are more e�cient to evaluate than others. In order to further increase the e�ciency of

incremental consistency checking, one could take those aspects into account and perform

a transformation of OCL consistency rules before their evaluation.
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20. Automatically Detecting and Visualizing Errors in

UML Diagrams

In [CCMS02], Campbell et al. build on top of their "formalization framework that

attaches formal semantics to a subset of UML diagrams used to model embedded sys-

tems" and describe automated structural and behavioural analyses applicable to UML

diagrams. They state that one of the reasons UML has become a de facto standard in

software modelling and development is that there is no out-of-the-box formal semantics

for UML and therefore it is customizable to a variety of domains. They have developed

a general formalization framework that supports several target languages, for example

VHDL, Promela, and the SPIN speci�cation language. The tool chain �rst consists of

MINERVA, which supports the graphical construction of UML diagrams and translates

them into a textual representation, HIL. The second component is their framework,

Hydra, which takes the textual representation of the UML diagrams and turns it into

an appropriate formal speci�cation in a particular target language. In their paper they

speci�cally show how the SPIN model checker can then be used to automatically ana-

lyze UML diagrams. The result of that analysis are returned to MINERVA, where it is

visually displayed to the user.

21. Using ViewPoints for Inconsistency Management

In [EN95], Steve Easterbrook et al. de�ne ViewPoints as loosely coupled, locally man-

aged, distributable objects which encapsulate partial knowledge about a system and

its domain, speci�ed in a particular, suitable representation scheme, and partial knowl-

edge of the process of development. They partition a development task into several

ViewPoints and then maintain consistency rules that describe the relationships between

various ViewPoints. Any two ViewPoints do not need to be consistent with each other

during the entire development process, but rather inconsistencies are allowed and every

ViewPoint keeps a list of unresolved inconsistencies involving itself. When a change in

the software model is made in one of the ViewPoints, only the consistency rules related

to the modi�ed ViewPoint are re-evaluated.
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22. Detecting Model Inconsistency through

Operation-Based Model Construction

Xavier Blanc et al. distinguish between structural and methodological consistency rules,

where the earlier ones are constraints that are evaluated against a model in a certain

state, at one point in time, while methodological consistency rules consider the sequence

of actions that lead to the current model. They de�ne classes of actions that, executed

in a certain order, lead to a certain model. Those actions can either be the creation of

a model element, the assignment of a value or reference, or the deletion of the model

element. Instead of only working with consistency rules that are based on a model in

its current state, they additionally allow us to impose constraints on the sequence of

actions that lead to the model, and they express those constraints in predicate calculus

such that existing logical inference engines can be used to evaluate the consistency rules.

23. xlinkit: A Consistency Checking and Smart Link

Generation Service

Christian Nentwich et al. [NCEF02] describe a lightweight application service called

xlinkit that checks the consistency of distributed web content. It is given a set of

distributed XML resources and a set of potentially distributed rules, expressed in a

de�ned language, that relate the content of those resources. In the context of consistency

checking, their system returns a set of hyperlinks between inconsistent elements instead

of Boolean values. Their focus does not lie on avoiding inconsistencies at any price,

but rather providing diagnostic information in the case of inconsistencies, which they

do by providing those links between con�icting elements. In order to avoid having to

re-evaluate the entire universe of elements and rules after every change, they introduce a

partitioning mechanism that allows de�ning document sets that are subsets of the entire

modelled system. They applied their technology to UML models supplied by industrial

partners.
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