TNF

Technisch-Naturwissenschaftliche
Fakultat

Incremental Consistency Checking
with SPARQL

BACHELORARBEIT
(Projektpraktikum)

zur Erlangung des akademischen Grades

Bachelor of Science

im Bachelorstudium

INFORMATIK

Eingereicht von:
Patrick Themessl-Huber, 0855303

Angefertigt am:
Institute for Systems Engineering and Automation

Beurteilung:
Univ.-Prof. Dr. Alexander Egyed, M. Sc.

Linz, Mai 2013

Incremental Consistency Checking
with SPARQL

Patrick Themessl-Huber

May 18, 2013

Incremental consistency checking is a method of increasing the perfor-
mance of the evaluation of UML consistency rules at design-time. It works
by determining and then keeping a list of model elements in memory for
every consistency rule, the so called change impact scope, and re-evaluating
the rule only when the user performs a modification of one of those model
elements in the list. This method has been shown to work if the consistency
rules are evaluated by an interpreter that is under our control so that we can
observe their evaluation. In this paper we assume the software model to be
stored in RDF and the consistency rules to be expressed in SPARQL. We
develop a method to determine the change impact scope by transforming the
queries in a way that the scope is contained in the result set of the modified
query. We show that it is possible to port incremental consistency checking
to systems where the evaluation of consistency rules is black-boxed, which
renders the previous approach of tracing the execution of an (OCL) inter-
preter inapplicable. Since (legacy) consistency rules are typically expressed
in OCL, in the second part of this paper I am introducing my approach to
determine a set of model elements that are required to calculate the result
of an OCL rule executed against a software model stored in RDF in order
to allow a pre-fetching of those elements in situations where the execution of

single SPARQL queries comes with a constant, high time penalty.

Inkrementelles consistency checking ist eine Methode, um die Auswertung
von UML Konsistenzregeln zur Designzeit zu beschleunigen. Fiir jede In-
stanz einer Konsistenzregel wird eine Liste von Modellelementen bestimmt
und dann im Speicher gehalten, der s. g. change impact scope, wobei gilt,
dass bei jeder Anderung eines der enthaltenen Modellelemente die zugehori-
ge Konsitenzregel-Instanz neu ausgewertet werden muss. Es wurde gezeigt,
dass diese Methode funktioniert, wann immer der Interpreter der Konsis-
tenzregeln unter der eigenen Kontrolle ist und somit die Auswertung der
Regeln beobachtet werden kann. In dieser Arbeit nehmen wir an, dass das
Software-Modell in RDF gespeichert wird und die Konsistenzregeln in SPAR-
QL ausgedriickt werden und wir entwickeln eine Methode, um den change
impact scope dieser Regeln zu bestimmen, indem die Regeln so transformiert
werden, dass der change impact scope im Ergebnis der Auswertung enthalten
ist. Wir zeigen somit, dass es moglich ist, inkrementelles consistency checking
in Szenarien einzusetzen, wo die Auswertung der Konsistenzregeln in einer
black boxr abliauft. Da die meisten existierenden Konsistenzregeln in OCL
ausgedriick sind, beeschreiben wir im zweiten Teil dieser Arbeit eine Metho-
de, um zu einer gegebenen Konsistenzregel in OCL eine Ubermenge der zur
Auswertung erforderlichen Modellelemente mittels SPARQL aus einem RDF
triple store im Voraus abzufragen, um die Auswertung in Situationen zu be-
schleunigen, wo das Ausfiihren einer einzelnen SPARQL-Abfrage mit einem

hohen, konstanten Zeitoverhead verbunden ist.

Contents

1.

9.

Problem

Introduction

. Automatic Incremental Consistency Checking

Qutline

RDF and the Change Impact Scope

. Introduction
. Introduction to SPARQL
. SPARQL Consistency Rules

. Determining a Change Impact Scope

Special Case: Cycles

10.Implementation

10.1. Transforming SPARQLo L oo
10.1.1. Exampleo 0oL
10.1.2. Lexing and Parsing
10.1.3. Pre-Processing oo
10.1.4. Transformation

10.1.5. Post-Processing

Towards an OCL to SPARQL Translation

11.Introduction

12.Introduction to OCL

13.Determining the Accessed Model Fragment

10

11
11
12
12
17
21

26
27
28
29
29
31
37

38
38
39

39

14.RDF Mapping and Type Resolving 41

15.Implementation 42
15.1. OCL Parser s 42
15.2. System Description o 43
15.3. Variable Stack 45

I11. Evaluation 46

IV. Related Work 50

16.The Expressive Power of SPARQL 50

17.A Framework for Generating Query Language Code from OCL Invariants 50

18.0n the Expressive Power of OCL 51
19.Transformation Techniques for OCL Constraints 51
20.Automatically Detecting and Visualizing Errors in UML Diagrams 52
21.Using ViewPoints for Inconsistency Management 52

22.Detecting Model Inconsistency through Operation-Based Model Construc-

tion 53
23.xlinkit: A Consistency Checking and Smart Link Generation Service 53
A. Example Output 55

1. Problem

Most software modelling utilities use proprietary or specialized technologies for the task
of persisting software models. For various reasons, efforts have been made to move the
persistence layer towards open standards, such as the Resource Description Framework
(RDF). The main reasons for doing so are to be more generic and enable the use of less
specialized algorithms that can easily be adapted to work on different model types, the
use of different constraint languages, and of course also the general advantages of RDF
(see http://www.w3.org/RDF /advantages.html).

Using conventional technologies for the evaluation of consistency rules against software
models stored in RDF would cause many small queries to be executed against the RDF
triple store, where each one of them comes with a certain time overhead, cumulatively
slowing down the consistency checking process. For that reason it is desirable to evaluate
a consistency rule with as few as possible queries to the RDF triple store.

This thesis covers two aspects of this transition to RDF:

In the first part, we assume a consistency rule to be expressed in SPARQL and then
develop a method to apply incremental consistency checking of that rule to a software
model stored in RDF, following the principles as described by Alexander Egyed [Egy11],
while avoiding a large number of queries for the reason mentioned in the previous para-
graph. Generally speaking, this approach constitutes a solution to situations where the
evaluation of a consistency rule happens in a black-boxed system, like an RDF triple
store, where incremental consistency checking done the usual way does not work because
the observation of the inner workings of the evaluating system is not possible.

In the second part, we assume a consistency rule to be expressed in OCL, one of
the currently more typical languages for this purpose, and ask ourselves how we can
evaluate this rule against a software model stored in RDF with as few SPARQL queries

as possible.

2. Introduction

Industrial software models may become very large in size and can contain thousands of
model elements. For obvious reasons it can become difficult to avoid design-time incon-
sistencies in such models without the assistance of an automatic consistency checking
mechanism. Consistency rules expressed in languages like OCL are the foundation for

such mechanisms, but their execution can be very resource consuming, so an automatic

re-evaluation of all the consistency rules after every change in the software model would
cause the responsiveness of modelling utilities to decrease dramatically, or even make
them completely unusable depending on the size of the model and the number of con-
sistency rules. Since the execution time of evaluating a large number of rules against a
large software model can easily reach several hours, [Egy11] even a user-triggered evalua-
tion may not be sufficient in terms of usability, because failing to regularly perform such
a lengthy (re-)evaluation (which additionally causes an interruption of the designer’s
workflow) allows for many inconsistencies to happen between two evaluations.

The purpose of incremental consistency checking is to improve the performance of
an evaluation of the consistency rules so that this task can be done in the background
without interrupting the workflow and providing near-instant feedback if a certain con-
sistency rule is violated during the design process. Several methods of achieving this
exist, some requiring the designer to specially annotate the consistency rules, while oth-
ers perform the task completely automatic. One of the latter ones |[Egyl1] do so by
observing the evaluation of every single consistency rule and remembering which model
elements are accessed in order to infer the resulting truth value of the rule. For every
rule, this list of model elements is kept in memory and only when one of them undergoes
a modification the related rule will be re-evaluated. The author states that this technique
is feasible for many constraint languages; one requirement being that the evaluation of a
certain constraint must be observable in some way. [Egyl1] In this paper we are show-
ing that the approach also functions if the evaluation of the rules is not observable, by
taking advantage of the knowledge about the semantics of the constraint language and
modifying the constraints such that they themselves contain the list of accessed model
elements in their result which is then returned. This allows for the evaluation to take
place in a black box, like it is usually the case in declarative query languages combined

with database systems.

3. Automatic Incremental Consistency Checking

In this section I am giving a short introduction to what automatic incremental consis-
tency checking is and demonstrate it by an example.

OCL consistency rules typically consist of two parts: A context element and an OCL
expression. The context element can be either a class or an interface, or any UML
element of a meta model. It does, however, not represent a particular instance of that

element, but covers all its instances. For example, defining a consistency rule with

context element Class means that the rule is evaluated against every Class in the model
and the evaluations of the rule against the different Classes happen independent from
each other. In the second part of the consistency rule, which is the OCL expression,
a keyword called self is available which describes the current instance of the context
element, or in our particular example a certain class in the model. To evaluate one
consistency rule, the first step is to determine all the instances of the context element
in the model. We then generate the cross-product of our consistency rule with all
those context element instances and call the resulting tuples consistency rule instances:
consistency rules in combination with a model element. We assume that every OCL
expression of a consistency rule must evaluate to either true or false and furthermore
assume that a consistency rule is satisfied iff. all its consistency rule instances evaluate
to true.

In automatic incremental consistency checking, we start by generating this list of
consistency rule instances. This is necessary because the evaluation of two distinct
consistency rule instances may very likely require information about distinct sets of
model elements. Initially we evaluate each one of them and while doing so, we store all
the model elements that were accessed during the evaluation and that therefore influence
the result of the evaluation. We call this list the change impact scope of the consistency
rule and we maintain all the change impact scopes in memory. During the following
software design process, whenever the user modifies one of the elements that are in one
of the change impact scopes, we know that we need to re-evaluate the corresponding
consistency rule instance as soon as possible and also create a new change impact scope
while we do so because the modifications in the model may have caused the change
impact scope to change.

There are two important requirements to a change impact scope. The first one obvi-
ously is that it has to be complete, because only a complete change impact scope per
definition guarantees that a consistency rule is re-evaluated after every possible modifi-
cation in the software model that causes the rule’s truth value to change. The second
requirement is that the change impact scope has to be as small as possible, ideally min-
imal (which means the change impact scope contains only model elements of which a
modification causes the result of the corresponding consistency rule to change). [Egy11]

Let us consider the example described by the class diagram in figure 1 and the sequence
diagram in figure 2.

In the class diagram we can see that the example consists of two classes: Switch

and Light, with the latter one containing the operations turn-on and deactivate. The

Sy O k= W N

£ switeh light| =it

. 0 - | 4 tum-on (]
42, deactivate ()

Figure 1: "Light Switch" Class Diagram

' | Switch the light

Q switch:Switch Q light: Light

1: activate

2 deactivate

Figure 2: "Light Switch" Sequence Diagram

sequence diagram states that in the scenario Switch the light, the Switch instance first
sends a message called activate and then a message called deactivate to the receiver of
type Light.

Let us now declare a consistency rule which states that whenever a message is sent
in the model, the receiver of that message must define an operation with a name equal
to that of the message. We can immediately observe that this rule is not satisfied in
our example, since the Light class does not define an operation called activate, while
the first message sent in the sequence diagram would require it. Such a consistency rule

could look like the one demonstrated in listing 1.

Context: Message
Description: Message action must be defined as an
operation in reciever’s class
OCL: self.receiveEvent.oclAsType(InteractionFragment).
covered->forAll (represents.type.oclAsType(Class).

ownedOperation->exists (name=self.name))

Listing 1: OCL Consistency Rule Example

In incremental consistency checking, we start by determining the context instances.

In our example, those context instances would be the two messages occurring in the
sequence diagram: activate and deactivate. In a second step, we initially need to evaluate
the rule against both context instances. While we do so, we need to remember the
model elements being accessed, which constitute our change impact scope. For the first
message, activate, those are: the message activate, its receive event, all the lifelines in the
diagram that are covered by that receive event, their types which represent the receiving
classes and all the operations owned by those classes. To demonstrate that the change
impact scope may very well vary from context instance to context instance, consider that
only due to the fact that the class Light does not contain an operation called activate,
for the evaluation of the consistency rule we need to iterate over all the owned methods
until we find that activate is not among them, so the change impact scope contains all
the operations of that class. Assuming we were looking for an operation called turn-on,
the OCL interpreter might very well use short-circuit evaluation and stop the iteration
of the operations immediately after turn-on was found, since this is enough knowledge
to infer that the rule is satisfied. In that scenario, depending on the iteration order, the
operation deactivate might be excluded from the change impact scope.

We have now gathered a change impact scope for every consistency rule instance and
whenever the user changes one of the model elements that occur in one of the change
impact scopes, we simply re-evaluate the corresponding rule instance and gather its new
change impact scope. In contrast, using a framework that does not implement incre-
mental consistency checking requires us to re-evaluate all the consistency rule instances
in the model after every small change somewhere in the model, which is by no means

efficient.

4. Qutline

In the first part of this paper I am describing how to modify a consistency rule expressed
in SPARQL so that the result of the new query contains the change impact scope of
the consistency rule. In the second part of the paper I describe a method that, given
a consistency rule expressed in OCL, determines a SPARQL query which returns a

superset of the model elements required to evaluate the OCL expression.

10

Part |.
RDF and the Change Impact Scope

5. Introduction

Industrial software design models sometimes consist of a very large quantity of model
elements which makes it necessary for software modelling utilities such as the IBM Ra-
tional Software Modeller to incorporate technologies that assist the designer in the task
of keeping the models in a consistent state. Languages exist which serve the purpose of
expressing consistency rules that are automatically evaluated against a given software
model. For obvious reasons instant feedback is desirable but considering the potentially
huge amount of model elements, the straightforward approach of re-evaluating all the
consistency rules after every single change somewhere in a software model is too inef-
ficient, so engineers have invested the effort to create a framework that determines for
each rule on which events it has to be re-evaluated.

One approach, as described by Alexander Egyed [Egyll|, is incremental consistency
checking: Initially, that is, when the designer first writes or modifies a consistency
rule, we observe the evaluation of that rule and keep track of all the model elements
that are accessed during this evaluation and which therefore potentially influence the
rule’s resulting truth value. For each rule, we then assemble those model elements in a
list, called the change impact scope. Only if and when the designer modifies a field of
one of the model elements that is in the change impact scope of a particular rule, we
need to re-evaluate the rule. Egyed demonstrates that even though the change impact
scope obtained by this approach is not necessarily minimal, we can observe a substantial
speedup when applying it to large industrial software models. It is common practice to
define a context for every consistency rule, that is a type of model element and acts as
the perspective out of which we evaluate the rule. So for every rule we employ a set of
change impact scopes, one for every consistency rule instance that consists of a rule and
the actual model element of the type as described by the rule’s context.

Observing the execution of a consistency rule in order to gain a particular change
impact scope is not always an option, especially when we use a black boxed and inter-
changeable database to store the software model and a descriptive language to express
the consistency rules. In this paper we are developing a method to gain a change im-

pact scope, assuming that the software model is stored in an RDF triple store and the

11

consistency rules are expressed as SPARQL queries.

6. Introduction to SPARQL

7. SPARQL Consistency Rules

SPARQL is a declarative, graph-based query language that is executed directly against
an RDF triple store, which means that unlike when following the approach of employing
a customized interpreter of a language for expressing consistency rules, we can not place
our logic to determine the change impact scope in the interpreter which is assumed to
be out of our control. Instead, the only thing we can work with is the SPARQL query
itself: we have to transform it in a way that the resulting query contains some extra
information from that we can derive the change impact scope.

To understand how we store a software model as RDF triples, let us take a look
at the example of a class diagram in figure 1 and a subset of the corresponding RDF
representation in figure 3. URIs are represented as blue rectangles, string literals as
green rectangles, predicates as directed red arrows, and instances of the Bag-concept as
triangles. We can see that in RDF, classes are represented by stub nodes consisting only
of an URI. All the additional information about those classes is also represented by URI
stubs. The association is represented by a set of RDF triples at the top of the diagram:
One URI for the association itself, two bag instances, one for each end of the association
that both contain a property which resolves to the classes "Light" and "Switch".

Since consistency rules are executed against a certain context, which is a type of
model element!, one rule consists of several SPARQL queries: One query to fetch all the
context instances - all RDF nodes that should act as the context of the rule - and then
one query to evaluate the consistency rule against one of those context instances. We
will call one of this rules executed against a context instance a consistency rule instance,
in accordance with [Egy11]: CRI=<ConsistencyRule, RDFNode>, where RDFNode is
a result of the context instance query.

We will now look at it in the context of a concrete example. Let us assume a very
simple consistency rule: "Every class must have an operation named deactivate". For
this example, we are interested in a different subset (figure 4) of the RDF graph of the

class diagram in figure 1. The context of this consistency rule is class, so as a first

! Theoretically we can use any set of RDF nodes as the context of a consistency rule, but typically this

will be a model element.

12

| .& org.eclipse.uml2.uml.Aszociation
s

http:iftsea.uni-linz.ac. at'martype

{'I.ﬁhﬂp:.f.ﬂ.ruuw.eclipse.org.fuml2f2.1.D.l’UML."_nR.HDEiPEd-XyeEIIIHCT-"?w

hittp o, 2 lipse, miza2 A0 UL onedEnd httpe it 2 clipse . orgfuml UL memberEnd

2 Dpag €
type Tl=14d | type
ownedEnd erEnd
|&org.eclipse.uml2.umI.Property
http:fize a, urFTinz. ac. atrmaitype http:fizea. uni-linZ-ag, atrmartype

URI
S

http:fhaan, e clipse.argfumiz2sz. 1.00UL_nRPUDEIPEd-2yeQl IHCT T |

Eghﬂp:.l’.ﬂ.rwu.ru.eclipse.org."uml?.l?ﬁ.

0/UML nRLgeEiRPEd-Xye0lHCT Fiu

hitp i e clipse orgfuml262 1 000 Lityp e

b

http:fommn. e clipse. org

b

uml2s2 1 .0 U Litype

LRI

gy hittpetfimmn. e clipse. argfuml2i2.1.00UML_nREPUOEIREd-Xye0lHET Fuwtyip e

{Jg-ht‘tp:.".l'uu.rwu.eclipse.org.l’umlzl?.1.D.l’

UL nRLqcEiPEd-ZyellIHCT Fuwtype

hitp:ifze 3. uni-linz:

http:itzea.uni-ling. ac. at'matvalue

at'maitype

| .& org.eclipse.uml2.uml.Class

http:fizea.uni-lin

http:iftsea.uni-linZag. at'martype

Eoac.atmatvalue

| \I:g http i, e clipse.argfumizsz. 1.00UR L WiodksEiP Ed-2y a0 THCT T |

eﬂ-ht‘tp:.".l'uu.rwu.eclipse.olg.l’ule.l?ﬁ.

OSURLY_20nCEi P Ed-XreOHHCT Fiu |

hitp i e clipse orgduml262 4 ML name

k.

httpeffommn. e clipse. org,

b

pumlZZ2 1 ML name

LRI

gy Ditpefimn e clipse. orgiumI2i2. 1 .0fUM LS o dksEiP Ed-Xye0lIHCY Tvwname

Eghﬂp:.l’.ﬂ.rwu.ru.eclipse.0rg.l’um|2."2.‘1.D.l'UML."_XIZInDquiPEd-)(yeDIIHC??uw’name

http:fizea. uni-linz"a

ifz.ac.atmarvalue

at'maitype

&ja\ra.lang.stling

http:ifse a. yrilinz. ac. at'martype

http:iisea.uni-linzae. at'matralue

Figure 3: Subset of "Light Switch" RDF Representation

13

C 00 ~1 O Ut =W N

[G S—y
_ O

step we need to execute a SPARQL query that returns a list of all classes represented
by their URI stubs (listing 2). In this example we do this by querying for all elements
of type "org.eclipse.uml2.uml.Class" that are owned by a package, although we are by
no means required to construct the query in this form; we allow everything SPARQL
has to offer with the only limitation that the query must be of the SELECT-type and it
must return exactly one column (i.e. there must be one variable in the SELECT-clause).
Executing this query against our simple model (figure 1) returns two URIs (table 1), one
representing each of the two classes in our model and therefore our context instances.
We then proceed to create consistency rule instances for every context instance URI
the initial query has returned. In our example those consistency rule instances are two
queries for an operation called "deactivate", one of the Switch class (listing 3) and one of
the Light class (listing 4)2. Listing 3 returns an empty result since the Switch class does
not contain a deactivate operation, while listing 4 returns one result row with variable
bindings representing the path in graph (figure 4) starting at the Light IRI down to
operation name deactivate. It is necessary to define a set of more or less complex tests
which determine the resulting truth value of the rule instance based on its result set to
allow for greater flexibility, but for the sake of simplicity in this paper we assume that a
rule evaluates to true exactly if there is at least one result, and false otherwise. Therefore
we could rewrite queries 3 and 4 into the ASK form of a SPARQL query, which follows

exactly this semantics.

PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX ma:
<http://sea.uni-linz.ac.at/ma/>
PREFIX uml:
<http://www.eclipse.org/uml2/2.1.0/UML/>
SELECT 7x
WHERE {
?7x ma:type "org.eclipse.uml2.uml.Class"
?x uml:owner 7y

?y ma:type "org.eclipse.uml2.uml.Package"

2In some of the queries in this paper we make use of SPARQL’s namespace prefix definition,
for instance to shorten hitp://www.eclipse.org/umi2/2.1.0/UML,/ WodksEiPEd-XyeOlIHC7Tw to
uml:_ WodksEiPEd-XyeOlIHC77w. They are both the same thing.

14

&L:ght

http:ifsea.uni-lin

& Switch
k.

Fac.atfmalfvalue http:fizea.uni-lin

Eoac.atmatvalue

LRI

gy hittpedifimmn e clipse argfuoml2i2.1.04/0

LRI

ML X0nCwEiFEd-yeQlIHCY Fuwname | ey ttpeifinmnnn 2 clipse. orgfumi2iz. 1 OFUML_WadksEiP Ed-Xye0lIHCT Fuwname

hittp cfhamnan, & lipse . arg,

3 b

| & org.eclipse.umlZ.uml.Class

umlzi2 A UL name

http:ftomn. e clipse. orgfumlz22 .1 UM L name

hitpifze 3. updinz. ac. atfmatvpe http:fizea. uni-linZ:

\Eﬁht'tp:.l’.l'mwm.eclipse.org.l’urnl2.l‘2.1.

URI

QUL 20 nOwEiPEd->ye0lHCT Ty | gy hitpoifnmm e clipse. orgfuml2i2. 1 0L WiodisEiP Ed-2ye0lIHCT T

hitp:iize a.uni-lin

. ac.atimalvalue http:fizea.uni-linz.

1159

‘g hittpffonnm. & clipse. argfumlziz. 1.0/0

Eﬁ hitp o, e clipse. orgfumlz/2. 1.0/ UML_imy-2EiP Ed-2yel IHCT Tuw'c| ass

ML g2eBOEIPEd-XyellIHCT Tuw'c|azs |

A

hitp i e clipse . arg,

L A

| .& org.eclipge.uml2.uml.Operation |

uml2i2 A AL sl ass

hitp i e clipse orgfuml2:2 4 000 L sl ass

Tz ac.at'martype http:ifsea.uni-linz:

{'I.ﬁhﬂp:.l’.ﬂ.rum.ru.eclipse.org.l’uml2.l‘2.1.

OiUMLS_gZoBOEIPEd-Xye0lHCT Tuu |

eght'tp:.l’.l'mwm.eclipse.org.l’urnl2.l‘2.1

OGUMLY_imny-2EiP Ed-XyeQIHET 7w |

hitp i e clipse . arg,

umlZiz A S name

http ol 2 clipe argfumlz2ez. 100U L nam e

URI

gy http . e clipse. orgfuml2e2 1 O UMLY g2 oBOEIFEd-2ye0lIHCY Fuwname

Eghﬂp:.l’.ﬂ.rwu.ru.eclipse.org."uml?."‘?ﬁ.D.l'UML.I'_imy—EIEiPEd-XyeDIIHCT-'T-'uul’name

ifiz.ac.atmafralue hitpifzea uni-linzlzs

atmastype httpdise a wrlinz. ac abimatype gnoitze a.uni-lingag, atfmaivalus

&java.lang.string

.& deactivate

Figure 4: Another subset of "Light Switch" RDF Representation

15

12

Listing 2: SPARQL Context Query

X

http : | Jwww.eclipse.org/uml2/2.1.0/UML/ _WodksEiPEd — XyeOll HC7Tw
http : | Jwww.eclipse.org/uml2/2.1.0/UML/ X0nOwEiPEd — XyeOll HCTTw

Table 1: Result of SPARQL Query in Listing 2

PREFIX rdf:

<http
PREFIX ma:
<http

://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

://sea.uni-1linz.ac.at/ma/>

PREFIX uml:

<http
SELECT
WHERE {

://www.eclipse.org/uml2/2.1.0/UML/>

?deactivate_op_class ma:value

uml

: _WodksEiPEd -XyeO1lIHC77w

?deactivate_op uml:class 7deactivate_op_class

?deactivate_op uml:name 7deactivate_op_name

?deactivate_op_name ma:value

"deactivate"

Listing 3: SPARQL Consistency Rule Instance 1 Query

PREFIX rdf:

<http
PREFIX ma:
<http

://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

://sea.uni-linz.ac.at/ma/>

PREFIX uml:

<http
SELECT =*
WHERE {

://www.eclipse.org/uml2/2.1.0/UML/>

?deactivate_op_class ma:value

uml :

_XOnOwEiPEd -XyeO1lIHC77w

16

11
12
13
14

?deactivate_op uml:class 7deactivate_op_class
?deactivate_op uml:name 7deactivate_op_name

?deactivate_op_name ma:value "deactivate"

Listing 4: SPARQL Consistency Rule Instance 2 Query

8. Determining a Change Impact Scope

Given a consistency rule instance expressed in SPARQL, our goal is to determine the
change impact scope of this rule by transforming the query in a way we can extract
the URIs of our RDF graph from the new result set which represent features of our
software model we need to monitor in order to determine when to re-execute the rule
due to a possibly different resulting truth value caused by user changes in the model. In
order to get there, we first look at the structure of a SPARQL consistency rule, starting
with our simple example from section 7. To get a better insight, we visualize one of
our consistency rule instances ("Class uml: WodksEiPEd-XyeOIIHC77w must have an
operation named deactivate"; SPARQL: see listings 3) as a query graph (figure 5). This
is a graphical representation of the graph pattern our query is looking for in the software
model. The variable bindings of a result row of this query represent possible paths in the
RDF model from the context instance uml: WodksEiPEd-XyeOlIHC77w to the string

literal deactivate.

uml:_WodksFEiPEd-Xye0llHC7 7w

Figure 5: Query Graph of Listing 3

To gain the change impact scope of a rule instance, we are interested in determining
a complete (but not necessarily minimal) list of URIs with the property that whenever
one of those URIs appears in a notification about a user change in the software model,

the result set of said rule instance query could potentially change.

17

While theoretically a list of all URI nodes in the software model would satisfy this
requirement, we are looking for a smaller, ideally a minimal list. We need to understand
that every edge with its adjacent nodes in figure 5 represents an RDF triple: The node
at the shaft of the arrow is our subject, the node at the arrowhead is our object, and
the edge label is our predicate. Furthermore, the result set of a rule instance query can
only change if an RDF triple is inserted (or deleted) that has a predicate which matches
one of the edges in the graph, as this is a requirement for a new path to emerge (or an
existing path to disappear). Intuitively one could come up with the very simple approach
to determine a change impact scope by doing something like gathering all the triples
in the RDF store with predicates matching any one edge in the graph. While such an
approach would theoretically work, i.e. it would deliver a valid change impact scope, it
would not be very efficient since the scope would be relatively large. To come up with
a smaller, still valid scope, let us take a look at SPARQL’s OPTIONAL keyword, as
described in the official SPARQL W3C recommendation [PS08]:

Optional parts of the graph pattern may be specified syntactically
with the OPTIONAL keyword applied to a graph pattern:

pattern OPTIONAL { pattern }

The syntactic form:

{ OPTIONAL { pattern } }

is equivalent to:

{ { } OPTIONAL { pattern } }

Graph patterns are defined recursively. A graph pattern may have
zero or more optional graph patterns, and any part of a query pattern
may have an optional part. In this example, there are two optional

graph patterns.

18

C 00 ~1 O Ut oW N

[G S—y
_ O

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7name 7mbox 7hpage
WHERE { 7x foaf:name “?name .
OPTIONAL { ?x foaf:mbox 7mbox } .
OPTIONAL { ?x foaf:homepage 7hpage }

If we now look at our SPARQL query graph in figure 5 as a tree3, ignoring the directed-
ness, and assume the context instance uml: WodksEiPEd-XyeOlUIHC77w to be the root
of this tree, we can easily gain another valid change impact scope by traversing this
tree and creating a new SPARQL query of the same structure, but which includes an
OPTIONAL keyword whenever we enter a new level of the tree, and placing a UNION
keyword between two or more triples on the same level that all lead to an OPTIONAL
part of the query?. In terms of effect on the result set of the query this means that
we do not only gain entire paths in the model from the context instance to deactivate,
but in addition to that we gain all paths starting at the context instance and ending
somewhere on the way to deactivate. We then gather our change impact scope by in-
cluding all RDF nodes that are in the result set of this new query. We demonstrate the
algorithm in pseudo-code listing 5. Performing it on our example in figure 5 generates

a new SPARQL query as seen in listing 6.

query = new graph pattern

call traverse(context instance, query)

function traverse(node, graph pattern):
for each child ¢ of node:
p = new optional pattern
graph pattern.attach(edge that lead to c, p)
p.attach(c)
traverse(c, p)
if node.children.count > 1 then

<put UNION between every pair of children>

3We will cover the special case of cycles in the query graph later.
4The UNION is required to put the OPTINAL branches at par, because without them, a match of

the first OPTIONAL branch would limit the result of the second etc.

19

12

O 00 ~1 O Ut = W N

e e
O ~J O Ot = W NN = O

end if

Listing 5: Pseudo-Code of SPARQL Query Generation

PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX ma:
<http://sea.uni-linz.ac.at/ma/>
PREFIX uml:
<http://www.eclipse.org/uml2/2.1.0/UML/>
SELECT
WHERE {
OPTIONAL { ?deactivate_op_class ma:value
uml: _WodksEiPEd -XyeOlIHC77w
OPTIONAL { ?deactivate_op uml:class
?deactivate_op_class
OPTIONAL { ?deactivate_op uml:name
?deactivate_op_name
OPTIONAL { ?deactivate_op_name ma:value

"deactivate"

P r o}

Listing 6: SPARQL Change Impact Scope Query for Figure 5

Let us now take a look at why this query produces a valid change impact scope
for rules similar to the one in listing 3. We assume to be notified about changes in the
software model through change notifications, each consisting of an operation € {INSERT,
DELETE} and an operand which is an RDF triple (subject, predicate, object). As
stated before, a re-evaluation of the consistency rule is necessary whenever a new path
P between the context instance and a leaf of our query tree emerges (or an existing one
disappears) in our software model. We re-evaluate a rule whenever we receive a change
notification with an operand with a subject or an object that is in our change impact
scope.

Let us first cover the INSERT case: For the new path P to emerge, it is trivially
necessary that at least one new RDF triple is inserted that represents an edge of our
tree. Let us assume that in the first place a partial path of P already exists, starting

at the context instance node and spanning over an arbitrary number z of edges towards

20

a leaf (including the case of x = 0). For P to emerge, it is now necessary that at
some point we receive an INSERT change notification with an operand that matches
the (x + 1)th edge on the path towards our leaf, because without this RDF triple our
path P can never be completed. Since this change notification obviously includes as its
subject or object the node that comes after the zth transition on our path, which is in
our change impact scope, we will re-evaluate the rule.

The DELETE case is almost trivial: Our change impact scope already contains all
the paths from the context instance to the leafs of our query tree that form the result
of the consistency rule. Once we receive a DELETE notification of an RDF triple that
is part of one of those paths, both subject and object of this triple are in our change

impact scope and therefore we re-evaluate the rule.

9. Special Case: Cycles

In this section we are dealing with the special case of the query graph having cycles, i. e.
when we can not look at it as a tree as we did previously. To demonstrate this situation,
let us take a look at the simple state chart in figure 6. Our example consists of two
states, "On" and "Off"’, and a transition from each to the other. We can find a relevant
subset of the model’s RDF representation in figure 7. At the bottom of the diagram
we can see a region, on top of that the two states with their respective names, at the
top of the diagram the two transitions with their names and at the center the source
and target of both transitions. Let us now formulate another rather simple consistency

rule: Every region must have an "On" state of which a transition called "deactivate”

must lead to another state which in turn must have another transition called "activate”
that leads back to the original state. After performing a query to gather all the context
instances of the rule with the context element being Region, one of our rule instances
could look like listing 7. Executing this rule instance query against our model in figure
7 will return one result row which we interpret as the rule evaluating to true. If we now
proceed to draw our query graph (figure 8), we can see that the graph is not acyclic,
which means we can not interpret it as a tree as we did in the previous example. In
order to gain our change impact scope query, we need to resolve the cycle in the graph,
which we can achieve by removing any one of the triple patterns that form it. Let us
for instance remove “activatetarget ma:value ?onstate and we gain a new query graph

as illustrated in figure 9.

1 PREFIX rdf:

21

O 00 =~ O Tt = W N

R S R N e e e i
S © 0 N O O ke W Ny O

21

(C# StateChart

2 Off

deactivate activate

&9 0n

Figure 6: "Light Switch" State Chart

<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX ma:
<http://sea.uni-linz.ac.at/ma/>
PREFIX uml:
<http://www.eclipse.org/uml2/2.1.0/UML/>
SELECT =
WHERE {
?onstate uml:owner
uml : _BGMEIEiREd -XyeOlIHC77w/owner
?7onstate uml:name 7Yonstatename
?onstatename ma:value "On"
?deactivatesource ma:value 7onstate
?deactivate uml:source 7deactivatesource
?7deactivate uml:target 7deactivatetarget
?deactivatetarget ma:value 7offstate
7activatesource ma:value 7offstate
?7activate uml:source 7activatesource
7activate uml:target 7activatetarget

7activatetarget ma:value 7onstate

Listing 7: SPARQL Rule Instance

We can now interpret the query graph as a tree, again ignoring the directedness of
the edges, starting at the context instance uml: WodksEiPEd-XyeOlIHC77w as our root
node and can then apply our algorithm from pseudo-code listing 5 to transform the query.
The resulting query will include all paths of the RDF graph that match any sub-tree of
our query in figure 8 that shares the same root node uml: WodksFEiPFEd-XyeOlIHC7Tw.

22

& activate
k.

http:itzea.uni-ling. ac. at'matvalue

& deactivate
b

http:ifsea.uni-ling.ac. at'mafvalue

\Eﬁht'tp:.l’.l'mwm.eclipse.org.l'uml2.l‘2.1.IZIIUMLJ'_JDdyEIEiREd-XyeDIIHC??Uu."narne | |{"ghﬂp:.-'.n.rwu.ru_eclipse.org.-'umIQ.l‘Z.‘l.D.-'UML."_INxKDEiREd-XyeDIIHC??uw’name
b b
|&0rg.e-:Iipse.uml2.umI.Transition
hitp:fhanen. e clipse orgfuml2e2 1 00U name hitp . e clipse. orguml2i2 1 0/UM L name

http:fisea uRFTinz. ac.atrmartype http:fizea. uni-linz:
LRT

gy hittpotfommn. e clipse. orgfuml2/2.1 . 00UML 10 dyOEIREd-Zye0lIHCT Fun

hitp i e clipse . arg,

1202 4 000 Litarget
httpe o, 2 lipse. opgfymizsz. 1. 00U Lisoure e
b

1

1159

gy hitpfhonnm ez lipse. argfuml2i2. 1.0/ UL INHOEIREd-2yve0IIHCT Fin

http fhamnmn, @ lipse . org)
httpeffommn. e clipse. org,

ml2e2 A 0 Lizoure e
12021000 Litarget

n
b

\I:ght'tp:.l’.l'mwm.ecIipse.org.l’urnl2.l‘2.1.IZI.l'UML.l'_.JDdyCIEiREd-XyeDIIHC??Marget |

| {'I.ﬁhﬂp:.l’.ﬂ.rum.ru.eclipse.org.l’uml2.l‘2.1.D.l’UML."_INxI-QJEiREd-XyeIZIIIHI:T-"?N'sour-:e |

¥

[¥
|un:

‘g hittpffonnm, &z lipse. orgfuml2i2 4.0 ML_JOdwIEIREd-2yeDIIHCT Fuwisoure &

|| \I:ght'tp:.l'.l'mwm.eclipse.org.l’uml2.l‘2.1.IZIIUMLJ'_INXKDEiREd-XyeDIIHC??uuf‘target |

http:itzea.uni-ling. ac. at'matvalue hitpiizee:

b

| LRI

g hittptfommn. e clipse. orgfuml2/2.1 . 00UMLY_BEMEIEIREd-Zye0lIHCT Fun |

httpcfamnan, & lipse argumlzez . 1.000h B

nz.ac.at'mafvalue

ea.uni-linz.

matwalue http:iisea.uni-ling. ac.at'mafvalue

| {Jg-ht‘tp:.".l'uu.rwu.eclipse.org.l’umlzl?.1

O/UMLY_CESvIEIREd-Xre0HCT Fiu |

hittp cfhamnan, & lipse . arg,
b

umlzi2 A UL name

b
URI

‘g httpfhonnm. ez lipse. orgfuml2i2 1.0/UML_BGMEIEIREd->yedlIHCT Fuw'name |

| {'I.ﬁhﬂp:.l’.ﬂ.rum.ru.eclipse.c-rg.l’uml2.l‘2.1.D.l’UML."_I:ESVIEiREd-XyeIZIIIHI:T-"T-"N'name |

http i e clipse . orgd

http:ifsea.uni-ling. ac. at'mafvalue

on

£2. 100U L con e ¢ F.ac.at/matvalue

http:iftsea.uni-lin

Off

|,ﬂ li (2.uml.Region €
org.eclipse.umls Uml.Region = pnizea uni-linz.ac. atfmaitype

I {Jg-ht‘tp:.".l'uu.rwu.eclipse.org."umlzl?.1.D."UML."_EIGMEIEiREd-X\,reDIIHC??Lrw’ouuner |

http:iisea.uni-ling. ac.at'matralue

b
http:tomn. e clipse. orgfuml22.1 00U LY A OHCAEIQEd- X0l IHC T Fiu |

LRI
"l

Figure 7: Subset of "Light Switch" RDF Representation

23

Zactivatesource

2activatetarget

uml;_BGMEIEIREd-

?deactivatetarget

?deactivatesource

uml:target

2deactivate

Figure 8: Query Graph of Listing 7

?deactivate

umbzource \umltarget umbzource \umlktarget

Tactivatetarget

umlname

uml: BGMEIEREd-Xye0ITHC7 7w/owner

Figure 9: Modified Query Graph of Listing 7

24

© 0 ~I O Ul W N

S T Sy S —
0 ~J O U = W NN = O

To demonstrate that this is query generates a valid change impact scope, let us first
assume that our state chart example does not have a transition called deactivate yet. The
change impact scope returned by the transformed SPARQL query would then contain
the nodes of the graph in figure 10. For the INSERT case, if we now add the deactivate
transition to the model, we will have to insert many RDF triples, and the object of one of
them must be uml: BGMEIEIREd-XyeOIIHC77w because this is where the deactivate
transition "attaches" to the On state, which is the transition’s source state. As soon
as this happens, the surrounding framework delivers an INSERT change notification
containing the On state’s stub node uml: BGMFEIEIREd-XyeOIIHC77w which is in
our change impact scope, so the rule will be re-evaluated. The order in which all the
INSERT notifications that together form the insertion of our deactivate transition arrive
does not matter, because whatever model changes have happened before, at some point
the transition has to "attach" to the On state’s stub in our change impact scope which
is the first chance (actually the exact point in time) when the result of the rule instance
query changes.

Again, the DELETE case is trivial and follows the same logic as in the previous

example.

PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX ma:
<http://sea.uni-linz.ac.at/ma/>
PREFIX uml:
<http://www.eclipse.org/uml2/2.1.0/UML/>
SELECT =
WHERE {
?onstate uml:owner <uml:_BGMEIEiREd-XyeOlIHC77w/owner>
{ OPTIONAL {
7onstate uml:name 7onstatename
OPTIONAL A
7onstatename ma:value "On"
P r 3
UNION
{
OPTIONAL |

?7deactivatesource ma:value 7onstate

25

19 OPTIONAL { 7deactivate uml:source

20 ?deactivatesource
21 OPTIONAL { ?deactivate uml:target
22 7deactivatetarget
23 OPTIONAL { 7?deactivatetarget ma:value
24 7offstate

25 OPTIONAL { 7activatesource ma:value
26 7Toffstate

27 OPTIONAL { 7activate uml:source

28 7activatesource

29 OPTIONAL { ?7activate uml:target

30 7activatetarget

31 Y PPl

32 }

Listing 8: Change Impact Scope Query of SPARQL Rule Instance

{J.ghttp:.l’.l‘mmw.eclipse.org.fumIQ.fZ.1.DIUMLJ'_BGMEIEiREd-XyeDIIHC??uw’ouuner

ht'tp:."mwum.eclipse.orgt‘l.AmIZ.ij UL o e

\u.ghttp:.l’.i\:wwu.eclipse.org!uml22.1.DIUMLJ'_EIGMEIEiREd-XyeDIIHC??w

http o e clipse . orgumi2i2 1 0L name

{J.ghttp:.l’.i\:wwu.eclipse.org.l’umI2.Q.‘1.D.l’UML.I'_EIGMEIEiREd-XyeDIIHC??uw’name

http:izea.uni-ling.ac.atfmatvalue

Ay on

Figure 10: Nodes in Change Impact Scope of Example in Listing 8

Following the same logic, we extend our algorithm to support SPARQL queries with

variables in the predicate of a graph pattern triple.

10. Implementation

We implemented a system that demonstrates the functionality of the described approach,
covering almost the entire language specification of SPARQL [PS08|. In this section we
will discuss the implementation of our approach as outlined by the system diagram in
figure 11 and then explain its interface to the environment. Again, our goal is to gain

a valid change impact scope, i. e. a set of RDF nodes that we need to observe with

26

the property that whenever one of them appears as the subject or object in a change

notification, we need to re-evaluate the rule.

v v
SPARQGL SPARQL
Scope Query Consistency Rule
Y S I —_——
1 ... : v Our Framework:
. 1 Transformed :
: ! Query I
n) : 1
! SPARQGL \
I Rule Instance 1 I | Result
—
RDF ! SPARQL : !
: Rule Instance n 1] cIs
1 ro
1 |
' » Query Result 1 !
| I [Result
1 ™ n
1
T » Query Resultn : oIS
|
1 T n
Lo e e e o e e o o e e = 1

Figure 11: System Diagram

10.1. Transforming SPARQL

The first step in our transformation process is to lex and parse a textual representation of
a consistency rule expressed in SPARQL (a LL(1) grammar) and turn it into an abstract
syntax tree, which we will then use to perform our transformation before using a code
generator to eventually create the textual representation of the transformed SPARQL
query. In this paper we are working with the SPARQL Query Language for RDF W3C
recommendation dated 15 January 2008 [PS08]. We take advantage of an already existing
SPARQL grammar for the ANTLR parser generator® to create a lexer and parser for
the SPARQL language. The sparkle-g [TMP12| project contains such a tree grammar
and we use it to generate a parser that creates an abstract syntaz tree of the rule query.
In a first pre-processing step we unify some of the various SPARQL notations of basic

graph patterns in order to simplify the following steps. We proceed with building the

5 ANother Tool for Language Recognition, is a language tool that provides a framework for construct-
ing recognizers, interpreters, compilers, and translators from grammatical descriptions containing

actions in a variety of target languages. [Par12]

27

O 0 N O Ot = W N

— = = =
w N = O

query tree as described earlier in this paper and then creating a new abstract syntax tree
representing the transformed query, which we UNION with the original query in order
to preserve its result in addition to the change impact scope. The following sections
describe those steps in detail by working with another simple example of a consistency

rule.

10.1.1. Example

To demonstrate the implementation of our approach we will use the following simple
consistency rule: "Every class must have an operation called furn-on and an operation
called deactivate", with Class obviously being the context of this rule. For flexibility
reasons we allow the context instances to be arbitrary RDF nodes the user provides in
the form of a list and we refer to it in the rule instances with a specially annotated
variable. In this particular case the user could gain such a list of classes (the context)
by executing a SPARQL query similar to the one in listing 2 with resulting context
instances as shown in table 1 (each binding of z represents one class’ stub RDF node).
In a next step, we express the consistency rule itself in SPARQL, for instance as in
listing 9. Since this is the generic SPARQL representation of the consistency rule we
do not include a concrete context instance in the query, but rather refer to it by using
a variable called Zcontext. Later we will tell the system as a parameter of an interface
call that this is the variable that is to be substituted with the context instances, one at

a time.

PREFIX rdf:
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>
PREFIX ma:
<http://sea.uni-linz.ac.at/ma/>
PREFIX uml:
<http://www.eclipse.org/uml2/2.1.0/UML/>
SELECT =*
WHERE {
?turnon_op_class ma:value 7context
?turnon_op uml:class 7turnon_op_class ;
uml :name 7turnon_op_name
?turnon_op_name ma:value "turn-on"

?deactivate_op_class ma:value 7context

28

14
15
16
17

?deactivate_op uml:class 7deactivate_op_class ;
uml :name 7deactivate_op_name

?deactivate_op_name ma:value "deactivate"

Listing 9: SPARQL Consistency Rule Query

10.1.2. Lexing and Parsing

We use the sparkle-g |[TMP12] ANTLR tree grammar to generate a Java tree parser
for SPARQL. When feeding our example rule from listing 9 to the parser we gain the

abstract syntax tree in figure 12.

10.1.3. Pre-Processing

Since SPARQL allows multiple different notations to address identical sets of triple
patterns, we do some pre-processing to unify the abstract syntax tree in order to simplify
the actual transformation process. SPARQL offers three types of triple pattern notation:
subject - predicate - object, subject with a following predicate - object list and subject
- predicate with a following object list. Of course those different notations result in
different abstract syntax trees and since they are nothing but syntactic sugar for one
and the same thing, we prevent several special cases in the following implementation by
assuring that only the first kind of pattern, subject - predicate- object, is present in the
input queries. The following citation [PS08| demonstrates the syntax of the latter two

pattern types by example:

4.2.1 Predicate-Object Lists
Triple patterns with a common subject can be written so that the
subject is only written once and is used for more than one triple

pattern by employing the ";" notation.

?x foaf:name 7name ;

foaf:mbox ?mbox .

This is the same as writing the triple patterns:

29

[Garao] [vd] [Fomdoueam]

[fuva] [Guswdowun] [ioareo] [fwa]

31voia3ud | [Loarens |

103rans anvs s3dris | [Loarans anvs sandni |

[1oare0] [ruva] [dououm]

esp | [1oargo | [Hivd| [sser do~ereanoesp | [Loareo |

31v0Ia3xd Lo3rans

[Hiva] [sweudoarenncesp | [1oarao | [[Hivd]

winiomidny | [Cwn]

[ruweoram] [Fa] [Foewmwram]

Listing 9

m

Abstract Syntax Tree of Query

Figure 12

30

?x foaf:name “name

?x foaf:mbox “mbox .
4.2.2 Object Lists

If triple patterns share both subject and predicate, the objects
may be separated by ",".

?x foaf:nick '"Alice" , "Alice "
is the same as writing the triple patterns:

?7x foaf:nick '"Alice"

?x foaf:nick "Alice_ "
Object lists can be combined with predicate-object lists:
?x foaf:name 7name ; foaf:nick "Alice" , "Alice_ "
is equivalent to:

?x foaf:name “name .
?x foaf:nick '"Alice"

?7x foaf:nick '"Alice_ "

In our pre-processing step we eliminate potential predicate-object lists and object lists
in the query and replace them with the regular subject - predicate - object triple pattern
notation. Applying this step to our abstract syntax tree from the example leads to a

new abstract syntax tree as illustrated in figure 13.

10.1.4. Transformation

Starting with our unified abstract syntax tree, we extract the triple patterns and use
them to build a query DAG of the rule, where each variable or literal is represented by
a vertex and each predicate by an edge. The directedness of the edges denotes which

vertex is the subject (shaft of the arrow) and which is the object (head of the arrow).

31

AMYNIGHLY

AMYNIGHLY

YNNG HLY]

AMYNIGHLY] AMVNING HLY] ANV HLYd AMVINRAHLYd

ANV HLY

3ON3NDIS HLVd

[[sweu=do~uoun; | 3ON3N03S HLYd

ssejo~do"uouny

3ON3NOIS HLYd

3ONINDIS HLVd

sse|o”do”ajeAnoeap 3ONINDIS HLVd 3ON3NDIS HLYd

Luo-uiny,,

3ON3N0ISTHLYd _ uE«cuaeuu_E;umvu_ 3ON3ND3S HLVd

L2EANOED,,

[fva] [Geewdowoum] [areo] [uva] [Fowoum] [marao] [fava] [Fovesm] [moarao] [rava] [aovoum]

[fva] [Fuevdosmmoen] [1omrao] [fuva] [Foememwer] [Dareo] [fuva] [owwmeer] [oarac] [fwva] [Foemdoemmwer] [oareo]

3Lv2Ia34d 103rans 31v0Ia3xd 103rans 3Lv2Ia34d 1o3rans 3Lv0Ia3ud 103rans 31v0Ia3yd 103rans 3Lv2Ia34d Lo3rans 3Lv0Ia3ud 103rans.

[1o3rans amvs satdriL [Lo3rans™amvs sa1driL [[1ozrans amvs s3tdrir | [Loarans amvs satdniy [Loarans™amvs “satdriL 103rans 3WvS s3TdRiL | 103rans”3INYS S3TdIML

31v0Ia3xd

103raNs”IWYS ST 1ML

[ou] [roewmran] [or]

[rewne>siany

NYZLLYd HdYH9 dNoND Aoy midny | [Cwn]
[a4 |

3n907108d

[3snv1o7zuanm | [3snvio iomas |

Listing 9

m

Unified Abstract Syntax Tree of Query i

Figure 13

32

We do so by starting at the annotated context variable (?context) and then adding edges
leading to or from new vertices, one for every triple pattern in the query that references
the current vertex as its subject or object. This leads us to the query graph in figure 14.
As specified earlier in this paper, our goal is to gain a graph which becomes a tree as
soon as we ignore the directedness of the edges and consider the context variable to be
the root, and we already demonstrated the correctness of this approach. In order to get
there, we stop the graph building process as soon as we reach a vertex that has already

been processed (compare figure 8 vs. figure 9).

umlname mnl:clags

mwnl:clags wnlname

?deactivate_op name

ma:value ma:value ma:value

A J

Figure 14: Query Graph of Query in Listing 9

In a next step, we apply our algorithm from pseudo-code listing 5 to actually transform
the query to return a change impact scope. We start at the root of our query "tree" and
traverse it, opening a new "level" of OPTIONALs whenever we step into the next depth
level of the query tree and closing it when the current sub-tree has been processed. We
use this algorithm to generate a fragment of an abstract syntax tree that queries for the
change impact scope of the original SPARQL query. In a next step, we replace all the
SPARQL variable names in that fragment such that they don’t conflict with the variable
names used in the original query and then we merge both by introducing a new top-
level SPARQL UNION node with the original query pattern and our newly generated
change impact scope query pattern as its children. In case the SELECT clause does
not contain an asterisk, we add all the newly introduced variables to it. The result of
those processing steps is the abstract syntax tree split into figures 15 and 16, which,
after passing it to our code generator, yields the SPARQL query in listing 10. Before
executing the query, we turn the query into a consistency rule instance by binding the
?context variable (and the corresponding variable in the change impact scope part of

the query) to one concrete instance of the rule’s context element.

33

anjeArew sweu:jwn

AMYIIND HLVd

snjeaew snjeaew

AAVINIEd HLYd

AMVINIEd HLYd

sseppijwn

AMYNIE A HLYd

AMYIIND HLYd AV G HLYd AAVINIEd HLYd

AMVINING HLY d

[Lseancesp.] [FonanoasThiva] [sweu=dosenmoesp | [FonanoasTHivd | [(sseiw"do~ewenpoesp | [2onanoas rivd | [wewos] [FonanoasThivd] [Lweun.] [Fonanoasviva] [eweudo-uowns] [FonanoasTHiva | [sseidoruowmy] [Zonanoas hiva | [sxewos] [zonanoasThivd |
[orao] [riva] [samrdrommmer] [somso] [miva] [oarao] [mws] [doemmmen] [1orac] [Gma] [ceriswmmmer] [mareo } T .i (oow] [ma] [rwam] [Dars] [oa] [sendoum
[aivoiaasd] [ograns] 31voiagud [a1voiaaud] [1oarans | [aivoiazud] [1oarans | [mEu_nmE [[1oarans [avoimzud] [3wvoiaaud] [1oarans | [aLvoiaaud | [Loarans]

[Losrans™amvs sandiii| [Loarans awvs satdn |

[

NYILLYd HAVH9™dNOoND

L03raNS INVS ST 1dINL [[Loarans awvs“saani | 103rENS INVS ST TdINL L03raNS INVS ST 1dINL

<t
o

(] [remoorand] [7a] [Foemmran] [5]
[oaznd] [z |
[=no0m08d]

[[naEvd Havae~dnous | |

[

_ mm:«._onmmm...;_ _ 3sN¥127L0313S _

_

133138

Abstract Syntax Tree of Query in Listing 9 (Part 1/2)

Resulting

Figure 15

ANV G HLYd

ANV HLVd

aweuzjwn

eenpoeap, | [30nanoasTHLvd | [Lwe-wny] [3onanoasTHivd |

9IeA

123rgo
3.LVOIg3xd

AMYNINd HLvd 123rgo

31vola3dd | [Lodrans [cren |

humﬂm_n_m JON3ANOIS HLVd SSedijwn

AHVINIY T HLYd

3ONINOIS HLVd

sse[a:jwn

[1oarans™awvs™sadme | [1oargo| [Hivd] [ser]

AV HLYd

[oarans™amvs™s31ame | [1oarao] |

Hivd | [zer]

AMYINIYd HLYd

\ N\ \ \

[Ny3Lwd Havas dnous | [awvoiazad] [ioarens| [ren] [3onanoas Hivd] [enesew]| [nezivdvdvas dnows | [sSivoiazud] |

\ \ / \ |

123rdans _ 1 3ONINOIS HLVd

[7vnorLdo | ograns awvs satdL| [Loarso| [Hiva] [ser] [Auveidd Hivd |

AV HLYd

~ N\ [/

[wnowdo] [Loarans awvs sziane]| [1oasrs Hivd | [zen]

[ny3LLvd Hdva9~dnows | [zivoigzud | [1oarans] [wewoss] | muzm_._om_mu.._._kn_]

[Nearvd _._n_«mw anouo | [31volazud |

[1oarans] [#ewoss] [ZonanoasTHivd |

AN N \

| — [7

[1oaransanvs sandm | [1oarao]| [Hiva] [owea

[7noiLdo | [1o3rans awvs s31dmL | [1oara0] | :._.qn_ | [ren] | ._<zo_Eo |
N¥3LLY HdV¥9 dNoND [suvoiazad | [Loarans |

[[7wnoiLdo [[1oarans™awvs™sadn |

~

NYILLYd HAYY9 dNoys

[wongo |

ﬁ [~

[Nd3Lvd Havee dnows | [3Sivoigsud | [Loarans |

\ | —

[wnoudo]| [Loarens anvs s3tdm |

AN

NY3LLYd HdvY9 dNoys

[wnodo]

NY3LLYd HdYH9™dNoy9

[NuaLYd Havae™dnous |

_

NOINA |

Hdvd9~dnos |

[

| 3LV Hava9~dnous |

| IXETE

Query in Listing 9 (Part 2/2)

x Tree of
35

Resulting Abstract Synta:

Figure 16

© o ~I O Ul W N

[N NG T N T N T N S N T O G e B e SR TGy S gy e
T~ W N R OO 0~ Ot WY RO

~N O Ut ok W N~

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>

PREFIX ma: <http://sea.uni-linz.ac.at/ma/>

PREFIX uml: <http://www.eclipse.org/uml2/2.1.0/UML/>

SELECT =

WHERE A{

{ ?turnon_op_class ma:value ?context
?turnon_op uml:class 7turnon_op_class ;
uml :name 7turnon_op_name
?turnon_op_name ma:value "turn-on'"
?deactivate_op_class ma:value 7context
?deactivate_op uml:class 7deactivate_op_class ;
uml :name 7deactivate_op_name
?deactivate_op_name ma:value '"deactivate"

} UNION A

{ OPTIONAL { ?var0 ma:value 7context
OPTIONAL { ?var2 uml:class ?var0
OPTIONAL { ?var2 uml:name ?7var3
OPTIONAL { ?var3 ma:value "turn-on"

L

UNION

{ OPTIONAL { ?var4 ma:value 7context
OPTIONAL { ?varb5 uml:class ?var4
OPTIONAL { ?var5 uml:name ?var6
OPTIONAL { ?var6 ma:value "deactivate"

r P}

Listing 10: Resulting SPARQL Query of Our Example

Pseudo-code listing 11 gives a coarse overview of the core transformation algorithm.

call unify_triples_same_subject ()

/* variables keep record of the owning triple */

variables = { }

for every triple t in the original query:

if not variables.contains(t.subject) then

36

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

variables.add(t.subject)

end if

variables[t.subject].attach(t)

if not variables.contains(t.object) then
variables.add(t.object)

end if

variables[t.object].attach(t)

root = variables[context]

call traverse(root, { }, new group_graph_pattern)

function traverse(node, covered, graph_pattern):
for each child ¢ of node:

p = new optional_pattern(c.triple)

if (node.children.index0f(c) < node.children.size - 1) then
<put UNION node between all children and current node>

end if

graph_pattern.attach(p)

if !'covered.contains(c) then
call traverse(c, covered.union(c), p)

endif

Listing 11: Pseudo-Code of SPARQL Transformation

10.1.5. Post-Processing

The result set of the transformed query consists of the result set of the original query,
where any of the columns representing the original query is not NULL, and then a
set of rows where the columns of the original query remain NULL and the columns
of our additional variables contain information about the change impact scope of our
consistency rule instance. In order to gather our change impact scope, we iterate over
the latter part of the result set and create a list of unique IRIs which serves as the change

impact scope as described earlier in this paper.

37

Part II.
Towards an OCL to SPARQL

Translation

11. Introduction

Independent of the chosen technology of persistently storing an UML model we need
to provide the ability to evaluate OCL consistency rules against the model, since OCL
is part of the UML specification. For many reasons it is desirable to evaluate those
rules as low as possible in a tiered architecture of a software modelling utility, one
of them being that following this approach it becomes superfluous to (partially) load
and map the model into main memory data structures multiple times before we can
evaluate OCL expressions using traditional methods, which is advantageous in systems
with dynamic loading of model fragments. An ideal solution to this task would be a
complete translation from OCL to a query language that is native to the persistence
technology used for storing the software model, such as SPARQL in the case of RDF. In
our concrete case, the question arises whether or not the expressive power of SPARQL
is enough to cover all the concepts of OCL. Existing work such as [AGO08| suggests
that SPARQL has an expressiveness equivalent to that of relational algebra, while other
papers like [HWDD] try to tackle the translation from OCL to SQL (see part IV of
this paper). These facts together let us conclude that in theory it might be possible to
define a mapping from OCL consistency rules to SPARQL consistency rules. Another
advantage of the evaluation of consistency rules in the persistence layer in situations
where, for example, the system is distributed over multiple physical machines and the
execution of single SPARQL queries causes a high overhead in execution time, due to
network communication or other factors. In those situations, even the possibility of
fetching in one single SPARQL query all the model information that an interpreter
requires to evaluate a given consistency rule constitutes a notable advantage. In this
part of the paper we describe an approach that does exactly this and due to the potential
reusability the work might serve as the groundwork for a complete translation from OCL
to SPARQL. Like in the first part of the paper, we assume a software design model to

be stored in an RDF triple store and furthermore we assume that the execution of

38

(SPARQL) queries against that model to exhibit a high constant time penalty due to
various overheads such as network communication and a general system-inherent, delay.
In situations where we want to evaluate consistency rules expressed in OCL against such
a model, using an interpreter to fetch tiny portions of the software model on demand in
order to evaluate an OCL rule is highly inefficient due to multiple delays caused by the
constant execution overhead. Our goal here is to develop a method that, starting at a
given OCL consistency rule, will generate one single SPARQL query that fetches all the
necessary information about a software model that is sufficient for the OCL interpreter to
evaluate the consistency rule without performing additional RDF queries. The approach

is generic enough to suit different RDF representations of software models.

12. Introduction to OCL

The Object Constraint Language (OCL) is an addition to UML that serves as a formal
language to specify constraints on UML software models. It is a declarative language that
is side-effect free, which means that the execution of OCL expressions can never cause
any changes in the software model it is evaluated against. OCL is an important addition
to UML in that it allows specifying precise semantics on top of the (graphical) software
models. [Dem09| The three most commonly used OCL constraints are invariants, pre-
conditions and post-conditions. Invariants are constraints that have to be satisfied at all
times, while pre-conditions and post-conditions have to be satisfied before or after the
execution of some program code. Our OCL constraints consist of two parts: The context
definition and the expression that is evaluated against all context element instances and
that can refer to the context element instance by using the self keyword. An example
of an OCL constraint (invariant) that states that the participants attribute of a class

called Meeting must be at least of size 2 can be found in listing 12.

context Meeting

inv: self.participants->size ()>=2

Listing 12: Simple OCL Example

13. Determining the Accessed Model Fragment

Let us look at the example OCL consistency rule in listing 13. In general, most of

the model elements accessed during the evaluation of an OCL expression are repre-

39

O 00 ~J O Ot = W N

[S—Y
]

sented by dereference terms consisting of a chain of names with optional additions
like, for example, formal parameters enclosed by parenthesis. One of those derefer-
ence terms in the example is self.namespace.oclAsType(Package).packagedElement. In
order to fetch the information required by the OCL interpreter to evaluate the rule,
we need to fetch the resulting elements of all those dereference terms in the OCL
expression, each representing a set of model accesses, and then let the interpreter
perform the rule’s semantics on top of those elements. In addition to that we need
to keep track of the variables used in the expression, which are nothing but abbre-
viations for dereference terms (or other variables that eventually resolve to them).
For instance, children in the example refers to a subset of the elements returned by
self.namespace.oclAsType(Package).packagedElement, where the logic to determine this
subset is based on additional model accesses on the set of elements returned by the
navigation term. So in order to feed all the information of this concrete example
necessary for the interpreter to interpret the LET expression, we need to remember
the results of self.namespace.oclAsType(Package).packagedElement (the first dereference
term), self.namespace.oclAsType(Package).packagedElement.oclls Type Of(Class) (the left

operand of the AND operation in the select specification), and self.namespace.oclAs Type(Package). pack:

(the information necessary to compute the right operand of the AND operation in the

select specification).

Context: Class

Description: parent class should not have an attribute
referring to a child class

O0CL:

let children:Set(NamedElement) =

self .namespace.oclAsType (Package).packagedElement ->

select (pe:PackageableElement |pe.oclIsTypeOf (Class) and

pe.oclAsType(Class).allParents () ->includes (self)) in

self .ownedAttribute ->forAll(p:Property|

p-type.oclIsTypeOf(Class) implies children->

excludes (p.type.oclAsType(Class)))

Listing 13: Example OCL Consistency Rule

40

14. RDF Mapping and Type Resolving

Since there is no globally valid mapping from software design models to RDF triples,
in order to determine what portions of the RDF model we need to fetch to enable the
interpreter to process a consistency rule, we extract the semantics of the dereference
terms to a system-specific module that provides type and mapping information.

We do so by introducing an interface with an option to call to the surrounding system
which will accept as parameters the type of the current model element combined with
the subsequent operation or property name in the navigation term and return the type
of the resulting elements combined with two SPARQL fragments that together represent
this one OCL navigation step: One fragment for the actual value of the new model
element and one for its stub. (Due to the simple structure of RDF triples we typically
find it necessary to facilitate some kind of stub node for every model element, which
most likely is an URI representing it, and we need to remember it to perform additional
navigation steps on the element.)

Let us now look at it in the form of an example, considering the navigation step
self — namespace. We already know the type of the initial model element, which in
this case is the context type Class. (Another way of gaining the initial type would be a
previous application of this method.) We will now ask the surrounding system through
an interface call as described above the following: If we navigate from a model element

of type Class to its property namespace...

1. ...what is the type name of the property namespace?

2. ...what is the SPARQL fragment to navigate from the RDF stub node of the Class
instance to the RDF stub node of the property namespace?

3. ...what is the SPARQL fragment to navigate from the RDF stub node of the Class

instance to the RDF value node of the property namespace?

The surrounding system will then return the following answers (compare to the model

fragment in figure 17):

1. Namespace
2. ?7in uml:namespace Tout

3. 7in uml:namespace 7x . 7x ma:value 7out

41

A Light

http:ifsea.uni-ling.ac. at'mafvalue

{Jﬁ-ht‘tp:.".l'uu.rwu.eclipse.org."umlzl?.1.D."UML."_)(DnDLruEiPEd-X\,reDIIHC??Lrw’name

hitp i e clipse orgduml262 4 ML name

4 & org.eclipse.umlZ.uml.Class

LRI . . .
gy hittptfommn. e clipse. orgfuml2/2 .1 00U ML 200 CwEi P Ed- 20l THCF T http-zea.uni-linz. ac. almaltype

hitp i e clipse orgfumll 262 A MM namespace

LRI i . . B
gy hittp i e clipse argfuml2e2 4 00U L 20nOwEiF Ed-Xye0lIHCF Fuwnamespace httpoizea.uni-linz.ac. atmaimame ' & namespace

http:ifsea.uni-ling.ac. at'mafvalue

EE} http:ttommn. e clipse. orgfum 221 00 ML W iNAETP Ed- 20l THCT T

Figure 17: RDF Fragment of Example Model

Please note that this method allows the user to also fetch an arbitrary set of additional
RDF nodes that may later be required by the interpreter simply by querying for them
in one of the two SPARQL fragments returned by the interface call.

We can now repeat this whole process and thereby resolve the entire navigation term

self.namespace.oclAsType(Package).packaged Element, one by one name (see figure 18).

Initial Type Name New Type Stub SPARQL Value SPARQL
Class namespace Namespace ?in uml:namespace ?out ?in uml:namespace x .
@ ?x ma:value Tout
Namespace | oclAsType (Package) | Package | ?in ma:value Zout | ?in ma:value 2out
Package packagedElement PackageableElement ?in packagedElement %Zx . ?in packagedElement %x .
?x ?y Zout ?x ?y 2out

Figure 18: Resolving an Entire Navigation Term

15. Implementation

15.1. OCL Parser

The starting point for the implementation of this approach will be a parser generated

by the jacc compiler compiler from an EBNF specification of OCL. jacc is short for just

42

another compiler compiler and it creates bottom-up/shift-reduce parsers targeting the
Java language and its syntax is closely syntactically compatible with Johnson’s classic
yacce parser generator for C. [Jon04] It takes an input file specifying things such as, among
others, a java package name, import statements, a class name, the names of the methods
linking the parser to the scanner, token names and the operator precedence. For every
EBNF production rule we can specify a semantic annotation in the form of a plain java
statement enclosed in curly brackets. The java code specified in those annotations stays
completely unchecked during the parser generation and the only changes jacc performs
are literal replacements of $$ with the return value of the current production rule and
of all $n with the return value of the n’th parameter on the right side of the production
rule. In the first line of the following example, $1 will become whatever (Object) it is
that PrimitiveLiteralExp returns and LiteralFxp itself will return the same Object, due

to the assignment of $1 to $$.

LiteralExp : PrimitivelLiteralExp { %8 =81; }
| CollectionLiteralExp { $$ = $1;
System.out.println("Hello world!"); }
| TupleLiteralExp {8 =81, }

2

We use this parser and the semantic annotation to generate a list of all model accesses
that are occurring in any given OCL expression. In order to stay independent of a
particular mapping from a software model to an RDF model, we introduce a framework
specific abstract resolver class that provides a SPARQL fragment representing every

dereference in an OCL expression.

15.2. System Description

As stated before, the starting point of our implementation is the OCL parser. Dur-
ing its operation, whenever it encounters a name token that marks the beginning of a
dereference expression as described before in this paper, it will create a new ModelFrag-
ment instance that represents this dereference expression. It will try to look up the
first name of that expression in its variable scope in order to determine its type and its
SPARQL expressions, against which the subsequent names will be resolved later. If the
first name of such an expression does not occur in the variable list, the system will raise

an error since it encountered an unknown name. Every subsequent name in the current

43

adi|panosay adsl payosal
depalgeles s|ean)|

Hnsay : (Buig : xysid'ianosayadAl 1 18n0sal UG | adiLpElU0d JBWARl Jibleds | anjeapelu0djuBWE) Jhieds | gnigpeluo'Buls | a0)biedgiah

Jojelauag|bieds

wawhelJbieds : biedggns
awfel4ieds biedganiea

juaLfel Jjapap

Bulg ; Bk
spaWey Buis © awleu

alEn

v

Justubeiqbieds | ibvedsansied
wawbesgiheeds | Oibvedganie nab
Suins - edd el

Burds - fowepied |ﬁ\;

0 1 0 b
depajgenes lasled LOpe o ae e

SUlEEW

sapn|a

ajqene)

sasn

adipasosay (Sluawnisy'ues|oog | aidpaxiens ' BullsS | uonelado'Auuls @ adiuaunaiuogeladoasosal
adhl panosay | (Uuea|nog : aidpaxies Aulls Auadoid Guuls - adi uaunajiyadoidasosal

lanosadadi)

iagram

Class D

Figure 19

44

expression will be added to the fragments list of the ModelFragment. This process is
repeated until the parser completed parsing the OCL expression, while we remember
every generated ModelFragment instance.

In the next step our goal is to derive the SPARQL fragments that query an RDF
triple store for all the model elements that will be accessed during the evaluation of
our OCL expression. To do so, we iterate over all our ModelFragment instances and
call their respective getSpargl() method. This method will in turn iterate over all its
fragments (i.e. names), starting by looking up both stub and value SPARQL fragments
that yield the model element represented by the first name in the fragment list. Those
fragments include an out-anchor SPARQL variable that we textually replace with a new,
query-wide unique variable name which also serves as the anchor point for the SPARQL
fragment of the subsequent name in the fragment list. As described before, the system
uses our TypeResolver to determine the type and SPARQL fragments of the next name
in the fragment list. All but the first names in the list have both in and out anchor
variables that are used to link the names’ SPARQL fragments to eventually form a
SPARQL query pattern representing the current ModelFragment. We keep track of all
the ModelFragments and the newly introduced variables in their SPARQL representation
to allow a mapping of the SPARQL results to the dereference expressions.

Once all the ModelFragments are converted to SPARQL fragments, we simply add
them together and prepend the SPARQL prefix that we receive as an input parameter
and that also contains the namespace definitions, and a SELECT clause with all the

relevant variables used in any of the SPARQL fragments.

15.3. Variable Stack

Some OCL constructs, like LET expressions or iterators on collection types introduce
variables that are not global and have a limited scope in the expression. In order
to handle those variables and their scopes correctly in our approach, we introduce a
variable stack. Each element on this stack is a variable map representing the scope of
the most recently introduced variables. Whenever the parser reaches a point in the OCL
expression that introduces a new variable, we perform a push() operation on the variable
stack and thereby add a new variable map that holds all the variables in the current
scope. When the parser reaches the point where the scope of the variable ends, it will
perform a pop() operation and dispose of the top variable map and all the variables in

it that have reached their end of life. Let us take another look at the example in listing

45

13 and compare it to the variable stack diagram in figure 20. At the very beginning we
introduce the very first scope in the variable map stack which only holds one variable:
self (t=1). Our system receives the binding of this variable as an input parameter.
Then, the pe:PackageableElement part in the first select operation introduces another
variable called pe (t=2) with a scope that spans over the body of the select operation.
Then, the LET expression introduces a variable called children (t=3) which is valid only
for the part of the LET expression after the in keyword (which in this case is until the
end of the OCL expression). The last variable is introduced by the p:Property part of
the forAll iterator (t=4) and it is also only valid inside the body of the forAll operation.

Every ModelFragment as described in section 15.2 holds a flat list of variables that are
valid at the place in the OCL expression where the corresponding dereference expression
occurred. When we instantiate a new ModelFragment, we copy all the variables from all
levels of the variable stack to its internal variable list, while variables of an inner scope

have precedence over variables of an outer scope and will overwrite them.

Part IIl.

Evaluation

In order to evaluate our SPARQL transformation, we use the examples illustrated earlier
in this paper, feed the corresponding SPARQL queries into our system and then analyze
whether the produced change impact scopes are correct. Since the effort to manually
verify those change impact scopes in the full-blown RDF representation of a real-world
UML model would be unreasonably high, considering the potentially huge size of the
resulting change impact scopes, and the infrastructure to perform higher-level tests in
the context of a software modelling utility is not available to me, we will use our own
rudimentary UML-RDF representation to validate our system. Since the algorithm in
principle operates on any kind of software model represented in RDF, this approach does
not violate any of our constraints.

Let us start with a rather basic example, which is the following consistency rule:
"Every class must have an operation called deactivate." As our model, we pick the RDF
graph as shown in figure 21. In SPARQL, we can represent this consistency rule as
shown in listing 14. In order to apply this consistency rule, we need to replace the

context variable with a context instance, in this case first ezx:Class! and then ex:Class?2.

46

Scope Stack

v

pe
self self
OIEN©
e
&
)
[4)]
g P
@ children children
self self
Time g
) 3 @)
A
@
&
el
3
@ children
self self
Time i

®

Figure 20: Variable Stack Example

47

®

Sy O W NN

If we use ex:Classl as the context instance, the expected change impact scope is as
follows: Class1, opl, and op3. Executing our system with these parameters produces
exactly this change impact scope. If we use ex:Class2 as our context instance, we expect
our change impact scope to consist of Class2 and op2, which is exactly what our system

returns.

Asome\!alue

http:fexample.comfname

\”5‘, http:ffexample. comdme1

hitp:ifexample. cqmiomns_member

\u.ghttp:.l’.l’example.com.fclasﬂ

URI
g Fierample comiuses 7 ¥ hitp:/fexample.com/Class2

http:ifexample. comiowns_operation

http:ifexample.co wns_operation

URT

httpeitexample.comiomns_operation sy hitpiifexample.comiopz

URT)
= ipEEm e centep hitp:ffexample.cominame

hittpeden . N A activate
% hitp:trexample. comiop3 prifexample.cominame
Adeactivate

httpuifexample.comfname

&initialize

Figure 21: RDF Representation of Basic Example

PREFIX ex: <http://example.com/>
SELECT =*
WHERE {

?context ex:owns_operation 7op

?op ex:name '"deactivate"

Listing 14: SPARQL Consistency Rule of Basic Example

Let us now look at another example based on the state diagram in figure 22. Our
diagram consists of two states, one called "On" and one called "Off". There are two
transition, one called "activate" and one called "deactivate". We now assume the fol-
lowing consistency rule: "Every region must have an "On" state of which a transition
called "deactivate" must lead to another state which in turn must have another transi-
tion called "activate" that leads back to the original state." Again, in SPARQL, we can
express this consistency rules as shown in listing 15. Our expected change impact scope

in this case is the following: ez:Tri, Tr2, Sti, St2, Rel which is correctly computed

48

by our system. During and after the development, we have successfully evaluated the
system using a number of more or less complex examples as illustrated here, which is

also the case for the second mechanism described in this paper.

\u..ghttp:.l’.l’example.com.fRﬁ

&Dn Afo

omfincludes_state httpuifexample. cofmjncludes_state

http:ifexample.cominame http:fexample.cominame

URI
5 httpritexcample. com/Stl 5 httpritesample.comiSt2

hitp:fexample.co Zomfonns_transition

\u.ghttp:.l’.l’example.com.fTQ

htp:ifexample. comfname

A activate

http:fexample. cofmfowns_transition feomfdestination

@hhp:#example.com!Tm

http:ifexample.cominame

& deactivate

Figure 22: RDF Representation of Second Example

1 PREFIX ex: <http://example.com/>

2 SELECT =

3 WHERE {

4 ?context ex:includes_state 7on_state

5) ?on_state ex:name "0On"

6 ?on_state ex:owns_transition 7deactivate
7 ?deactivate ex:name 'deactivate"

8 ?deactivate ex:destination 7off_state

9 ?0ff_state ex:name "0Off"

10 ?0ff_state ex:owns_transition 7activate
11 ?activate ex:name "activate"

12 ?activate ex:destination 7on_state

49

13

Listing 15: SPARQL Consistency Rule of Second Example

Part IV.
Related Work

16. The Expressive Power of SPARQL

While in this paper we provide a method of determining the change impact scope of a
consistency rule expressed in SPARQL and a method to pre-fetch part of the model that
is required for an OCL interpreter to interpret an OCL consistency rule against a model
stored in RDF, we did not discuss the question whether or not SPARQL is expressive
enough to cover all the possible consistency rules that the OCL grammar can produce.
A positive answer to that question would enable an interesting continuation of our work:
the direct translation of OCL expressions to SPARQL.

In their paper, Angles et al. [AGO08| claim that they were able to prove that SPARQL
has the expressiveness of relational algebra. They define a set of transformations from
SPARQL to non-recursive safe Datalog with negation, show that SPARQL is contained
in the latter one, and then prove by applying the transformations that the results of
queries before and after the transformation produce equivalent results (and everything
vice-versa) and then state that since non-recursive safe Datalog with negation has the
same expressive power as relational algebra, SPARQL has the same expressive power
as relational algebra. This in turn implies that if a transformation from OCL to SQL
exists, it should in theory be possible to perform a direct transformation from OCL to

SPARQL.

17. A Framework for Generating Query Language
Code from OCL Invariants

In their paper, [HWDD] Florian Heidenreich et al. claim they have developed a generic

software framework to create query language code from OCL invariants in the context

20

of model-driven software development (MDSD). They state that most current MDSD
approaches only focus on transforming structural descriptions of software systems, while
neglecting semantical integrity rules. Their framework consists of three parts: The first
one reads the UML/OCL model and creates an abstract syntax model of it, while the
second one performs the transformation of the UML model to the target data schema.
The third part maps OCL invariants to declarative query languages. For this transfor-
mation, they identified common patterns that occur in OCL constraints. The framework
provides the possibility for the developer to specify the equivalent code fragments of the
target relational algebra query language of his choice. They exhibit an example of a
transformation from OCL to SQL, however the rules in the target system are enforced
by creating a VIEW on one or multiple database tables and then applying view-based
integrity checks. Little implementation details are given so it remains questionable as
to whether or not their approach functions without database-specific features that are

outside the scope of relational algebra.

18. On the Expressive Power of OCL

In another interesting paper, [MC99| Luis Mandel and Maria Victoria Cengarle inves-
tigate the expressive power of OCL. They show that the expressiveness of OCL and
relational calculus are not identical, however they do so only by showing that some of
the constructs of relational calculus are not expressible in OCL, which does not allow
the converse argument that OCL is not contained in relational calculus. Another finding
was that due to the missing capability of computing some recursive functions, OCL is

not equivalent to a Turing machine.

19. Transformation Techniques for OCL Constraints

J. Cabot and E. Teniente |[CT07| investigate different syntactic possibilities to define
equivalent integrity constraints. They show alternative expressions for some constructs
in OCL that yield identical semantics, for instance by replacing the context element of a
constraint, replacing collection operators with others and applying Boolean algebra laws.
Depending on the interpreter, some of those semantically identical integrity constraints
are more efficient to evaluate than others. In order to further increase the efficiency of
incremental consistency checking, one could take those aspects into account and perform

a transformation of OCL consistency rules before their evaluation.

51

20. Automatically Detecting and Visualizing Errors in
UML Diagrams

In [CCMS02|, Campbell et al. build on top of their "formalization framework that
attaches formal semantics to a subset of UML diagrams used to model embedded sys-
tems" and describe automated structural and behavioural analyses applicable to UML
diagrams. They state that one of the reasons UML has become a de facto standard in
software modelling and development is that there is no out-of-the-box formal semantics
for UML and therefore it is customizable to a variety of domains. They have developed
a general formalization framework that supports several target languages, for example
VHDL, Promela, and the SPIN specification language. The tool chain first consists of
MINERVA, which supports the graphical construction of UML diagrams and translates
them into a textual representation, HIL. The second component is their framework,
Hydra, which takes the textual representation of the UML diagrams and turns it into
an appropriate formal specification in a particular target language. In their paper they
specifically show how the SPIN model checker can then be used to automatically ana-
lyze UML diagrams. The result of that analysis are returned to MINERVA, where it is
visually displayed to the user.

21. Using ViewPoints for Inconsistency Management

In [EN95]|, Steve Easterbrook et al. define ViewPoints as loosely coupled, locally man-
aged, distributable objects which encapsulate partial knowledge about a system and
its domain, specified in a particular, suitable representation scheme, and partial knowl-
edge of the process of development. They partition a development task into several
ViewPoints and then maintain consistency rules that describe the relationships between
various ViewPoints. Any two ViewPoints do not need to be consistent with each other
during the entire development process, but rather inconsistencies are allowed and every
ViewPoint keeps a list of unresolved inconsistencies involving itself. When a change in
the software model is made in one of the ViewPoints, only the consistency rules related

to the modified ViewPoint are re-evaluated.

52

22. Detecting Model Inconsistency through

Operation-Based Model Construction

Xavier Blanc et al. distinguish between structural and methodological consistency rules,
where the earlier ones are constraints that are evaluated against a model in a certain
state, at one point in time, while methodological consistency rules consider the sequence
of actions that lead to the current model. They define classes of actions that, executed
in a certain order, lead to a certain model. Those actions can either be the creation of
a model element, the assignment of a value or reference, or the deletion of the model
element. Instead of only working with consistency rules that are based on a model in
its current state, they additionally allow us to impose constraints on the sequence of
actions that lead to the model, and they express those constraints in predicate calculus

such that existing logical inference engines can be used to evaluate the consistency rules.

23. xlinkit: A Consistency Checking and Smart Link

Generation Service

Christian Nentwich et al. |[NCEF02] describe a lightweight application service called
zlinkit that checks the consistency of distributed web content. It is given a set of
distributed XML resources and a set of potentially distributed rules, expressed in a
defined language, that relate the content of those resources. In the context of consistency
checking, their system returns a set of hyperlinks between inconsistent elements instead
of Boolean values. Their focus does not lie on avoiding inconsistencies at any price,
but rather providing diagnostic information in the case of inconsistencies, which they
do by providing those links between conflicting elements. In order to avoid having to
re-evaluate the entire universe of elements and rules after every change, they introduce a
partitioning mechanism that allows defining document sets that are subsets of the entire
modelled system. They applied their technology to UML models supplied by industrial

partners.

References

[AGOS| Renzo Angles and Claudio Gutierrez. The expressive power of spargl. In
Proceedings of the 7th International Conference on The Semantic Web, ISWC

23

[CCMS02

[CT07]

[Dem09)

[Egy11]

[EN95]

[HWDD]

[Jon04]

[MC99]

INCEF02]

[Par12]

[PS08]

[TMP12]

'08, pages 114-129, Berlin, Heidelberg, 2008. Springer-Verlag.

Laura A. Campbell, Betty H. Cheng, William E. Mcumber, and R. E. K.
Stirewalt. Automatically detecting and visualising errors in uml diagrams.
Requirements Engineering, V7(4):264-287, December 2002.

J. Cabot and E. Teniente. Transformation techniques for ocl constraints. Sci.
Comput. Program., 68(3):152-168, October 2007.

Dr. Birgit Demuth. Einfiihrung in ocl, 2009.

Alexander Egyed. Automatically detecting and tracking inconsistencies in
software design models. IEEE Transactions on Software Engineering, 37:188—
204, march /april 2011.

Steve Fasterbrook and Bashar Nuseibeh. Using viewpoints for inconsistency

management. Software Engineering Journal, 11:31-43, 1995.

Florian Heidenreich, Christian Wende, Birgit Demuth, and Technische Uni-
versitdt Dresden. A framework for generating query language code from ocl

invariants.
Marc P. Jones. jacc: just another compiler compiler for java, 2004.

Luis Mandel and Maria Victoria Cengarle. On the expressive power of ocl. In
Proceedings of the Wold Congress on Formal Methods in the Development of
Computing Systems-Volume I - Volume I, FM 99, pages 854-874, London,
UK, UK, 1999. Springer-Verlag.

C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a con-
sistency checking and smart link generation service. ACM Transactions on
Internet Technology (TOIT), 2(2):151-185, 2002.

Terence Parr. Antlr parser generator, October 2012.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query lan-
guage for RDF. W3C recommendation, W3C, January 2008.
http://www.w3.org/TR/2008 /REC-rdf-sparql-query-20080115/.

Simone Tripodi, Michele Mostarda, and Juergen Pfundt. sparkle-g, October
2012.

54

A. Example Output

95

‘pasn seam sasodind aanensn(r o7 1a1osa1 2dA1 WOBNY (epw
"ABNEAD 01 105 I[NSAT U0 15 0] 2wos sarmbayy (4.
qs1x S suonewasadar THOAVAS 1a2q fsesodmd aanensnyp 1o (4

BT

toall pu3Jadquisw: TN 3xa3uoog
b uIHM
3¢ IXRIU02¢ 123735
</TWn/e T Z/TTun/3a0"asdTTaa M/ /id3dy> sTWN XI43ud
</BW 3BT 2R ZUTT-TUN Bas/ /1d33y> ew XT434d
CHSU-XEIUAS-4PI-Z7/208/666T /Buo - gm mmm, /1diay> 14pd XT438d

pale 2 SoUMSEUOD TOAY IS

1=>()9zTs<- (Suou: :putyuoTiedsuddy<>uoTieda.d8e " d[d)30aTas<-puIIaquan-4Tas SOTTAUT @<()aZTS<-pUIJaguau41as
UDTIETIOSSY :3XIIUCD

Ay AU TIO

uonEodwod 10 UONESAITEE UR 24 A PIU U3 UGJEIIGSSE U0 JS0UI 1y

uondLasaq enixay,

{

{6TA¢ anTen:ew

UD¢ T UD¢ BWBLITWN 8TAZ C LYIITMS, SNTEAIEBW UD§ * UD¢ BWEUITWN 8TAZ * ,SSETD TWn-zmuwn-asdrrre-fdo, adAy:ew grag}
} 343Hm

6TA 123735

</WN/8 T g/zTun/da0 asdrroa - mw/ / 1diay>

ITWN ¥T43Hd </EW/3IETIETZUTT-TUN'E3S//1d33y> BW XT4I¥d <#SU-XEIUAS-JPJ-7Z/70/66GT/BJ0gm mmm// 1diiy> 14pJa ¥I434d

w00 TURWERL] 12pO TOHY IS

{{
{ { { - zJea; anTea:ew TaeA; } TWNOILO ° TJEAZ SWEUITWR 3533¢ } TYNOILdO }
MNOTNN

{{ * .ssep) Twn-grwn-asdrraa-8a0, adAy:ew 3sa3; } WNOILLO } }

NOINM

{ * sweu; anyena:ew x;

© g BWEUITWN 3X3JU0DJ
- L SSET) Twn-ZTwn-asdyraa-8do, adAy:ew jwajuocdg }
b 3u3Hm
TJEAZ @JBA{ ZJEA BWELS IX3IU02¢ 113135
</IWnse T z/zTun/8a0 asdTTaa M/ 1d3ayy TTWN XT43¥d
</Bw 1B 3B ZUTT-TUN Eas/ /:d33y> ew ¥I43ud
<#SU-¥EQUAS-4PJ-7Z /28/666T /40" £ mam/ /1 d33Y> 4pd XT43¥d

Arany adoog wedwy afumyy 18V IS

{

SWELS INTEAIBW XJ

TOM{ SWEUITWN JIHAJUO0DIE

* LSSETDC WA ZTwn asdTTaac8uo, adfiiew Ixajuod
b ¥3IHM
AWEU I¥IIUOD¢ 173735
</MNSe T g eTun/Ba0 asdrraa M od3ays TTwn XT43¥d
<fewfiet e ZUTT-Tun eas/ f1d3ay> ew XT434d
CHSU-XEIUAS-4pI-Z7 /28/6E6T Ba0 gm mmw/ / 1diay> 14pad XT434d

el @Y KoUNSEUOD TOAY 45

 BUENSSETD, = SWeu-41as
SSET] 3IX3IU0]

Ay AdUASHUOD) T

\SUENSSE]), 3 PIAOYS JWE SSER MLL,

uopdEasa Emxay,

26

‘pasn sem sasodind aanensnyy 107 1910521 3dA) WOISTY) (g
"ABNEAD 01 105 I[NSAT U0 15 0] 2wos sarmbayy (4.
qs1x S suonewasadar THOAVAS 1a2q fsesodmd aanensnyp 1o (4

oAl pUIJaquBw: TWn 3Xa3u0d
b ouIHm
Ad IARIUODE 1DTTIS
</MNSe T g eTun/Ba0 asdrraa M od3ays TTwn XT43¥d
<fewfiet e ZUTT-Tun eas/ f1d3ay> ew XT434d
<#SU-XBIUAS-4PI-ZZ/Z0/666T /B0 gm mmn// 1d3quy> 4pd XI43¥d

wals MY ADUAS VO TOAV IS

(aweu-zd<>auweu Td satTdut zd<>1d|A3uadoag:zd “1d) [Ty404<-puzsaguaw- 4Tas 1130
UOTIBTIOSSY :3IXajuod

Ay ASUASHUOT TIO

UONEPOSSY) UM JUTEL INDIUN © JABY JSTUL SPUI UDHEROSSY uopduasaq Enxag,
{
{sTné anTenzew g¢ - q¢ uoTieSaudBe:un $TAE ° PIAZ X§ 2wg
© aWwg puzJagquaw:Tun @nd c L BWENY, SNTEAIEW UJ§ C UDJ SWBUITWN @A T L UOTIETIO0SSY Twn-grwn-asdiriacSao, adAjiew gagl
NOIND
{2md %g auwg
* 3w puIJaqusw:Twn gad * SWBNY, SNTEAIBW U3§ * UDJ SWEUITWN 9A§ " UOTIBTIOSSY' TWn:gTwn- asdiraa-8Jo, adAi:ew ong}
} Fu3aHm

STAE TTAE £LA¢ 103735
</ MWn/a T z/zTwn/8a0 asdTIa M/ 1diqy>
SN WT43Hd A._.mE\u.m.um.Nc.ﬂ.ﬁl.ﬂc:-mwﬂ\\unuur_v TEW WT43Hd A#mc|Xmuchm|muL|NN\N®\m\m\mH\wLﬂ.m}.‘._@!\._‘“,n_u.u.r_v TP WT43Hd

s IRN) TURWERTY 12PN IOV 45

{{{{d
{ { - guea; anTeaiew yJeA; } TYNOILAO }
NOTINN
{ { - .puTyuoriedaJ88y- Twn-zTwn asdrra 840, adfy:ew pJeas } TYNOILLO }
* paead uotTiedaadde: (un £JeA; } O IWNOILLO
* EJBAf ZJBAZ TJEAE } TWNOILdO
© [JEAG pugJaquaw: Twn 35334} TYNOILJO
} nomin {
© 3¢ anfeaiew g
© LpuTHuoTIESa 88y Twn - zTwn -asdra - Bao, adAyiew eg
* eg uoTiedaadde: Tun a;
T B¢ Wg oAy
T awg puzJaquaw: Twn 3xajuocdg }
b Fu3HM
ZuBA¢ TJEAZ @JBA FUBAG EJBAZ GUBAZ 3¢ I@IUOIE 133135
</TWn/e T Z/ZTun /840" asdTTaa MM/ / 1d3ay> 1TWN XT434d
< /BB 3BT ZUTT-TUN BAS,/ /1d3qys tBw ¥T43¥d
<HSU-XBIUAS-4PI-ZZ /28/666T Bao-cm mmw//1diay> 13pa XT43dd

Aaamgy adoog wedwy afuey) 10V IS

{
* 3 AnTEAiEW B
© LpuTyuoTiEHaJddy - Twn - zTwn -asdTraa 80, adiyiew e
* eg uoTiedasdde: uwn ag

o7

‘pasn sem sasodind aanensnyy 107 1910521 3dA) WOISTY) (g
"ABNEAD 01 105 I[NSAT U0 15 0] 2wos sarmbayy (4.
qs1x S suonewasadar THOAVAS 1a2q fsesodmd aanensnyp 1o (4

AUZ ANTEAIEW U
T Uf AWeuITWn B¢
T B§ KE BOY
* BOJ AINQTAIIYPAUMO: TWN 3HIIU0DE
} Fu3um
AU 3XBIUODE 1DFT3S
</IWN/0 T"Z/ZTun /340 asdTTaa mmn// 1d3qy> 1 TWN XId38d
<fewyfie o ZUTT-Tun-eas; f1d33y> ew XI43dd
<HSU-XEIUAS-4PI-ZZ/20/666T Bao-cm-mmm// 1diay> 13pad XT43dd

el 2 S2UNSENOD) T AV IS

(oweu-gd<raweu Td SaTTdwT zd<>Td|AJuadoud:zd 1d) TTwW04<-33INqTJI3¥PaUMO" $T3S 100
SSETD @ 3X8IU0D

Ay AU TIO

SUIEU 3NY LI anbum asn jsnu ssep

uondiasaq [Emxa,

{

{6EA; BNTEAIBW UD§ * U} BWBLITWN BEA ~ BEAS ThAS WY

T AW PUIJBQUBWITWN @ZAZ * L BWENY, SNTEAIEW UDJ * UDJ SWEU:ITWN @ZAd ° L UOTIETI0SSY Twn zmun-asdrrre-8uo, adfyiew gzad}
NOINN

{Lzne arng awg

T AW puIJAOUBW:TWN 9ZA¢ L, SWENY, SNTEAIBW UIJ * UD§ SWEUITWN 9zAF L UDTIET20SSy" Twn'zwn-asdirratduo, mnhu“m_w_ oznd}
TYIHM

BEAE SEAE TEAN GEAL LEAE 123735
</MNse T /eTen /B0 asdToa M/ rdiay >
STuWn ¥TI43¥d </BW/3e" 3B ZUTT-Tun-eas/ /:d3qy> :ew XT43¥d <H#SU-XBIUAS-4pJ-77/78/666T /810 em mmmy /1diiy> 13pJ XT43¥d

paehIANG RWERL] [2pOW TOEY S

{1 {{1
* GJBAJ INTEAIBW pJEAZ } TWNOILAO
T pJEAS BWEUITWN £JEAZ } TYNOILAO
© EJBAJ TJBAG TJBAE } TWNOILdO
© [JEA¢ puZJaquaw: Twn 35334} TYNOILJO
} momnn {
* A ANTEAIEW UZ
T oug AWBUITWN 87
T B¢ Wg oAy
T awg puzJaquaw: Twn 3xajuocdg }
b Fu3HM
TABAL TJBAE BJBAE frdBA¢ EJBAZ SJBAE A¢ JXRJIUDDE 123735
/TN T T/ TTun/Bao - asdrTaa M/ od3ay> Twn ¥I434d
< /BB 3BT ZUTT-TUN BAS,/ /1d3qys tBw ¥T43¥d
<HSU-XBIUAS-4PI-ZZ /28/666T Bao-cm mmw//1diay> 13pa XT43dd

Aaamgy adoog wedwy afuey) 10V IS

{
©OAG anTeaiew ug
© U@ aweu:Tun aj
T B¢ X§ A

o8

‘pasn seam sasodind aanensn(r o7 1a1osa1 2dA1 WOBNY (epw
"ABNEAD 01 105 I[NSAT U0 15 0] 2wos sarmbayy (4.
qs1x S suonewasadar THOAVAS 1a2q fsesodmd aanensnyp 1o (4

{

{6TAZ BNTEAIEW UD§ * UDE BWEUITWN RBTAS ~ BTAZ SNTEAIEW QF * TEAE X&

AW AW AINOTJIIVPIUMOITUN @AE * ,BWENY, SNTEAIEW UdE ° UDJ IWEUITWN @rd * ,5SETD Twn grwn-asdiroa-8uo, adfy:ew angt
NOINN

{TTA¢ anTeazew q¢ * g¢ @TA¢ awg

T AW AINQTJIIYPIUMO: TWN @TAZ ° L SWENY, SNTEAIEW UDJ * U BWEU:TWN @TAE * ,LSSET) Twn ' zmun-asdrroa-ddo, adiy:ew grag}
} Fu3um

€Zré BTAL STAY ETAY TTAZ 123135

</ /8 T 7/zTun /30" asdrraa M/ / 1d3ay>

ITWN XT43¥d </BW/1ET DB ZUTT-TUn-eas//:dily> 1ew XI43¥d <#SU-XBIUAS-4PJ-ZZ/7@/6EET/Ba0gm-mwn// 1d1iy> 14pJa ¥XI43ud

w00 TURWERLY 12po TOUV 45

{{{{{{
© GUBAS ANTEASEW HJBAZ } TYNOILJO
© fJBAS WEUITWN £JEAZ } O TYNOILAO
© EJEA TJBAG TJEAZ } TWNOILMO
© TJEA{ BINGTJIIYPSUMD: TWN 35834 } TYNOILdO
} nomn {
tOALE anTEAIBW UG
U SWEUITWN B§
T BE M¢ BO{
© BO¢ 2INGTJIIVPSUMO: TN 3xa3U0¢ }
b Fu3HmM
TJBAE GUBAF @JBAF PJBAJ EJBAF TJBAF AU IX33U02¢ 123735
</IWN/8 T z/ZTun /30 asdTTaa M/ / 1daay> TTWN XT434d
<fewfiet e ZUTT-Tun eas/ f1d3ay> ew XT434d
<#SU-XBIUAS-4P-ZZ/28/6EET/BI0 g M/ /133> 14pJ XTd3Hd

Asanfy adoog wedwy 28uey) OV JS

{

29

